Publications by authors named "Aneas I"

The mechanisms that underlie the timing of labor in humans are largely unknown. In most pregnancies, labor is initiated at term (≥ 37 weeks gestation), but in a signifiicant number of women spontaneous labor occurs preterm and is associated with increased perinatal mortality and morbidity. The objective of this study was to characterize the cells at the maternal-fetal interface (MFI) in term and preterm pregnancies in both the laboring and non-laboring state in Black women, who have among the highest preterm birth rates in the U.

View Article and Find Full Text PDF

Obesity-associated morbidity is exacerbated by abdominal obesity, which can be measured as the waist-to-hip ratio adjusted for the body mass index (WHRadjBMI). Here we identify genes associated with obesity and WHRadjBMI and characterize allele-sensitive enhancers that are predicted to regulate WHRadjBMI genes in women. We found that several waist-to-hip ratio-associated variants map within primate-specific Alu retrotransposons harboring a DNA motif associated with adipocyte differentiation.

View Article and Find Full Text PDF

Background: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry.

Methods: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype.

View Article and Find Full Text PDF

Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified many disease-associated variants, yet mechanisms underlying these associations remain unclear. To understand obesity-associated variants, we generate gene regulatory annotations in adipocytes and hypothalamic neurons across cellular differentiation stages. We then test variants in 97 obesity-associated loci using a massively parallel reporter assay and identify putatively causal variants that display cell type specific or cross-tissue enhancer-modulating properties.

View Article and Find Full Text PDF

Human trophoblast stem cells (hTSC) can be isolated from first trimester placenta but not from term placenta. Here we demonstrate that villous cytotrophoblasts (vCTB) from term placenta can be reprogrammed into induced trophoblastic stem-like cells (iTSC) by introducing sets of transcription factors. The iTSCs express TSC markers such as GATA3, TEAD4 and ELF5, and are multipotent, validated by their differentiation into both extravillous trophoblasts (EVT) and syncytiotrophoblasts (STB) in vitro and in vivo.

View Article and Find Full Text PDF

Whereas coding variants often have pleiotropic effects across multiple tissues, noncoding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we investigated the genetic and functional architecture of a genomic region within the gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting and from megabase distances.

View Article and Find Full Text PDF

Various human diseases and pregnancy-related disorders reflect endometrial dysfunction. However, rodent models do not share fundamental biological processes with the human endometrium, such as spontaneous decidualization, and no existing human cell cultures recapitulate the cyclic interactions between endometrial stromal and epithelial compartments necessary for decidualization and implantation. Here we report a protocol differentiating human pluripotent stem cells into endometrial stromal fibroblasts (PSC-ESFs) that are highly pure and able to decidualize.

View Article and Find Full Text PDF

While a genetic component of preterm birth (PTB) has long been recognized and recently mapped by genome-wide association studies (GWASs), the molecular determinants underlying PTB remain elusive. This stems in part from an incomplete availability of functional genomic annotations in human cell types relevant to pregnancy and PTB. We generated transcriptome (RNA-seq), epigenome (ChIP-seq of H3K27ac, H3K4me1, and H3K4me3 histone modifications), open chromatin (ATAC-seq), and chromatin interaction (promoter capture Hi-C) annotations of cultured primary decidua-derived mesenchymal stromal/stem cells and in vitro differentiated decidual stromal cells and developed a computational framework to integrate these functional annotations with results from a GWAS of gestational duration in 56,384 women.

View Article and Find Full Text PDF

Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression.

View Article and Find Full Text PDF

Rationale: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5.

View Article and Find Full Text PDF

Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation.

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that how DNA is organized in 3D shapes inside cells affects how genes work, but we still don't completely understand it.
  • Scientists studied the Six homeobox genes, which are important for development, and found that these genes are organized in a specific 3D structure that's been around since before many animal types appeared.
  • By changing parts of this structure in zebrafish, they learned that this 3D organization helps genes behave differently even when they're close together, and certain patterns in DNA are common across many animals!
View Article and Find Full Text PDF

Transcriptional mediators of cell stress pathways, including HIF1α, ATF4, and p53, are key to normal development and play critical roles in disease, including ischemia and cancer. Despite their importance, mechanisms by which pathways mediated by these transcription factors interact with one another are not fully understood. In addressing the controversial role of HIF1α in cardiomyocytes (CMs) during heart development, we discovered a mid-gestational requirement for HIF1α for proliferation of hypoxic CMs, involving metabolic switching and a complex interplay among HIF1α, ATF4, and p53.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made.

View Article and Find Full Text PDF

Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations.

View Article and Find Full Text PDF

To study the evolution of recombination rates in apes, we developed methodology to construct a fine-scale genetic map from high-throughput sequence data from 10 Western chimpanzees, Pan troglodytes verus. Compared to the human genetic map, broad-scale recombination rates tend to be conserved, but with exceptions, particularly in regions of chromosomal rearrangements and around the site of ancestral fusion in human chromosome 2. At fine scales, chimpanzee recombination is dominated by hotspots, which show no overlap with those of humans even though rates are similarly elevated around CpG islands and decreased within genes.

View Article and Find Full Text PDF

The ongoing requirement in adult heart for transcription factors with key roles in cardiac development is not well understood. We recently demonstrated that TBX20, a transcriptional regulator required for cardiac development, has key roles in the maintenance of functional and structural phenotypes in adult mouse heart. Conditional ablation of Tbx20 in adult cardiomyocytes leads to a rapid onset and progression of heart failure, with prominent conduction and contractility phenotypes that lead to death.

View Article and Find Full Text PDF

Human mutations in or variants of TBX20 are associated with congenital heart disease, cardiomyopathy, and arrhythmias. To investigate whether cardiac disease in patients with these conditions results from an embryonic or ongoing requirement for Tbx20 in myocardium, we ablated Tbx20 specifically in adult cardiomyocytes in mice. This ablation resulted in the onset of severe cardiomyopathy accompanied by arrhythmias, with death ensuing within 1 to 2 weeks of Tbx20 ablation.

View Article and Find Full Text PDF

The evolutionary transition of the fins of fish into tetrapod limbs involved genetic changes to developmental systems that resulted in novel skeletal patterns and functions. Approaches to understanding this issue have entailed the search for antecedents of limb structure in fossils, genes, and embryos. Comparative genetic analyses have produced ambiguous results: although studies of posterior Hox genes from homology group 13 (Hoxa-13 and Hoxd-13) reveal similarities in gene expression between the distal segments of fins and limbs, this functional homology has not been supported by genomic comparisons of the activity of their cis-regulatory elements, namely the Hoxd Global Control Region.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have consistently implicated noncoding variation within the TCF7L2 locus with type 2 diabetes (T2D) risk. While this locus represents the strongest genetic determinant for T2D risk in humans, it remains unclear how these noncoding variants affect disease etiology. To test the hypothesis that the T2D-associated interval harbors cis-regulatory elements controlling TCF7L2 expression, we conducted in vivo transgenic reporter assays to characterize the TCF7L2 regulatory landscape.

View Article and Find Full Text PDF

Plasticity of gene regulatory encryption can permit DNA sequence divergence without loss of function. Functional information is preserved through conservation of the composition of transcription factor binding sites (TFBS) in a regulatory element. We have developed a method that can accurately identify pairs of functional noncoding orthologs at evolutionarily diverged loci by searching for conserved TFBS arrangements.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) routinely identify risk variants in noncoding DNA, as exemplified by reports of multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer in five independent regions in a gene desert on 8q24. Two of these regions also have been associated with breast and colorectal cancer. These findings implicate functional variation within long-range cis-regulatory elements in disease etiology.

View Article and Find Full Text PDF

Cardiac interstitial fibrosis may contribute to ventricular dysfunction and the prognosis of patients with dilated cardiomyopathy. The objective of the present study was to determine if total myocardial collagen content and collagen type III/I (III/I ratio) mRNAs differ in hypertensive, alcoholic, and idiopathic dilated cardiomyopathy subjects. Echocardiography and exercise cardiopulmonary testing were performed in patients with idiopathic (N = 22), hypertensive (N = 12), and alcoholic (N = 11) dilated cardiomyopathy.

View Article and Find Full Text PDF