Considering recent clinical and experimental evidence, expectations for using DCD-derived intestines have increased considerably. However, more knowledge about DCD procedure and long-term results after intestinal transplantation (ITx) is needed. We aimed to describe in detail a DCD procedure for ITx using normothermic regional perfusion (NRP) in a preclinical model.
View Article and Find Full Text PDFBackground: Donor-specific anti-HLA antibodies (DSA) impact negatively on the outcome of intestinal grafts. Although the use of antibody-removal therapies (ART) is becoming more frequent in the last few years, issues regarding their timing and effectiveness remain under discussion.
Methods: In the present study, we report our experience with eight ART procedures (based on plasmapheresis, intravenous immunoglobulin, and rituximab) in eight pediatric intestinal and multivisceral transplants with de novo DSA (dnDSA).
The use of animals to gain knowledge and understanding of diseases needs to be reduced and refined. In the field of intestinal research, because of the complexity of the gut immune system, living models testing is mandatory. Based on the 3Rs (replacement, reduction and refinement) principles, we aimed to developed and apply the derived-intestinal surgical procedure described by Bishop and Koop (BK) in rats to refine experimental gastrointestinal procedures and reduce the number of animals used for research employing two models of intestinal inflammation: intestinal ischemia-reperfusion injury and chemical-induced colitis.
View Article and Find Full Text PDFThere is an urgent need to address the shortage of potential multivisceral grafts in order to reduce the average time in waiting list. Since donation after circulatory death (DCD) has been successfully employed for other solid organs, a thorough evaluation of the use of intestinal grafts from DCD is warranted. Here, we have generated a model of Maastricht III DCD in rodents, focusing on the viability of intestinal and multivisceral grafts at five (DCD5) and twenty (DCD20) minutes of cardiac arrest compared to living and brain death donors.
View Article and Find Full Text PDF