Publications by authors named "Ane Larranaga-Vera"

Osteoarthritis (OA) pathogenesis is associated with reduced chondrocyte homeostasis and increased levels of cartilage cellular senescence. Chondrosenescence is the development of cartilage senescence that increases with aging joints and disrupts chondrocyte homeostasis and is associated with OA. Adenosine A2A receptor (A2AR) activation in cartilage via intra-articular injection of liposomal A2AR agonist, liposomal-CGS21680, leads to cartilage regeneration in vivo and chondrocyte homeostasis.

View Article and Find Full Text PDF

Loss of bone is a common medical problem and, while it can be treated with available therapies, some of these therapies have critical side effects. We have previously demonstrated that CGS21680, a selective A adenosine receptor agonist, prevents bone loss, but its on-target toxicities (hypotension, tachycardia) and frequent dosing requirements make it unusable in the clinic. We therefore generated a novel alendronate-CGS21680 conjugate (MRS7216), to target the agonist to bone where it remains for long periods thereby diminishing the frequency of administration and curtailing side effects.

View Article and Find Full Text PDF

Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracellularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited.

View Article and Find Full Text PDF

Several studies have linked metabolic syndrome to the development of osteoarthritis (OA) through hypercholesterolemia, one of its components. However, epidemiological studies showed contradictory results, and it is not clear how hypercholesterolemia itself, or oxidized LDL (oxLDL)-a pathological molecule potentially involved in this relationship-could be affecting OA. The objectives of this study were to investigate the effect of hypercholesterolemia induced by high-fat diet (HFD) in cartilage from OA rabbits, and how oxLDL affect human chondrocyte inflammatory and catabolic responses.

View Article and Find Full Text PDF

Osteoblast differentiation and proliferation are regulated by several modulators, among which are adenosine A receptors (A2ARs) and Wingless/Integrated-β-catenin pathways. Cytosolic β-catenin stabilization promotes its nuclear translocation and transcriptional activity. In the present study, we seek to determine whether there is a connection between A2AR stimulation and cellular β-catenin levels in osteoblasts.

View Article and Find Full Text PDF

Osteopenia and fragility fractures have been associated with human immunodeficiency virus (HIV) infection. Tenofovir, a common antiviral in HIV treatment, also leads to increases in bone catabolism markers and decreased BMD in children and young adults. In murine models and human cell lines, tenofovir inhibits adenosine triphosphate release and decreases extracellular adenosine levels.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MetS) may be associated with knee osteoarthritis (OA), but the association between the individual components and OA are not well-understood. We aimed to study the effect of hypercholesterolemia on synovial inflammation in knee OA.

Methods: OA was surgically induced in rabbits fed with standard diet (OA group, n = 10) or in rabbits fed with high fat diet (OA-HFD, n = 10).

View Article and Find Full Text PDF

Insulin is an inducer of chondrocyte hypertrophy and growth plate chondrogenesis, although the specific molecular mechanisms behind these effects are mostly unknown. Our aim was to investigate whether insulin-induced chondrocyte hypertrophy occurs through a modification in the amount of O-linked N-acetylglucosamine (O-GlcNAc)-modified proteins and in the expression of the key enzymes of this pathway, O-GlcNAc transferase and O-GlcNAcase (OGA). We also studied if O-GlcNAc accumulation per se, induced by an OGA inhibitor, was able to induce pre-hypertrophic chondrocyte differentiation both in vitro and in vivo.

View Article and Find Full Text PDF