Ubiquitination controls multiple cellular processes relevant to cancer pathogenesis. Using Gene Set Enrichment Analysis of an mRNA transcriptome dataset, we have identified genes encoding components of the ubiquitin system that are differentially expressed in colorectal cancers as compared to normal colonic mucosa. Among the significantly overexpressed genes was NEDD4 (neural precursor cell-expressed developmentally down-regulated 4), the prototype member of the HECT (homologous to E6AP C-terminus) E3 ubiquitin ligase family.
View Article and Find Full Text PDFGap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junction channels are made of a family of integral membrane proteins called connexins, of which the best-studied member is connexin43. Gap junctions are dynamic plasma membrane domains, and connexin43 has a high turnover rate in most tissue types.
View Article and Find Full Text PDFSUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells.
View Article and Find Full Text PDFThe connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development.
View Article and Find Full Text PDFUnlabelled: Gαq-stimulation reduces intercellular coupling within 10 min via a decrease in the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2), but the mechanism is unknown. Here we show that uncoupling in rat cardiomyocytes after stimulation of α-adrenergic Gαq-coupled receptors with norepinephrine is prevented by proteasomal and lysosomal inhibitors, suggesting that internalization and possibly degradation of connexin43 (Cx43) is involved. Uncoupling was accompanied by increased Triton X-100 solubility of Cx43, which is considered a measure of the non-junctional pool of Cx43.
View Article and Find Full Text PDFThis article is the first to show that loss of connexin43 (Cx43) expression in colorectal tumors is correlated with significantly shorter relapse-free and overall survival. Cx43 was further found to negatively regulate growth of colon cancer cells, in part by enhancing apoptosis. In addition, Cx43 was found to colocalize with β-catenin and reduce Wnt signaling.
View Article and Find Full Text PDFToxicol Appl Pharmacol
August 2010
Gap junctions are intercellular plasma membrane domains containing channels that mediate transport of ions, metabolites and small signaling molecules between adjacent cells. Gap junctions play important roles in a variety of cellular processes, including regulation of cell growth and differentiation, maintenance of tissue homeostasis and embryogenesis. The constituents of gap junction channels are a family of trans-membrane proteins called connexins, of which the best-studied is connexin 43.
View Article and Find Full Text PDFIntercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43.
View Article and Find Full Text PDFGap junctions are dynamic plasma membrane domains, and their protein constituents, the connexins, have a high turnover rate in most tissue types. However, the molecular mechanisms involved in degradation of gap junctions have remained largely unknown. Here, we show that ubiquitin is strongly relocalized to connexin-43 (Cx43; also known as Gja1) gap junction plaques in response to activation of protein kinase C.
View Article and Find Full Text PDFGap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels.
View Article and Find Full Text PDF