This article provides insights into hydrogels of the most promising biodegradable natural polymers and their mechanisms of degradation, highlighting the different possibilities of controlling hydrogel degradation rates. Since biodegradable hydrogels can be designed as scaffolding materials to mimic the physical and biochemical properties of natural tissues, these hydrogels have found widespread application in the field of tissue engineering and controlled release. In the same manner, their potential as water reservoirs, macro- and microelement carriers, or matrixes for the selective adsorption of pollutants make them excellent candidates for sustainable soil amendment solutions.
View Article and Find Full Text PDFThe copper-free azide-alkyne click reaction has shown to be a successful alternative to immobilize covalently a fluorescente compound onto poly(-l-lactic) acid (PLLA) surfaces. Proceded by basic hydrolysis and amidation reaction, typical surface characterization techniques have validated each functionaliztion step and the success of the conjugation. This method offers a catalyst-free option for various surface conjugations, extremely demanded in biomedical and biosensory fields.
View Article and Find Full Text PDFNaturally derived biopolymers modifying or combining with other components are excellent candidates to promote the full potential of additive manufacturing in biomedicine, cosmetics, and the food industry. This work aims to develop new photo-cross-linkable alginate-based inks for extrusion 3D printing. Specifically, this work is focused on the effect of the addition of cross-linkers with different chemical structures (polyethylene glycol diacrylate (PEGDA), -methylenebisacrylamide (NMBA), and acrylic acid (AA)) in the potential printability and physical properties of methacrylated alginate (AlgMe) hydrogels.
View Article and Find Full Text PDFPhotocuring of chitosan has shown great promise in the extrusion-based 3D printing of scaffolds for advanced biomedical and tissue engineering applications. However, the poor mechanical stability of methacrylated chitosan photocuring ink restricts its applicability. The inclusion of co-networks by means of simultaneous polycomplex formation is an effective method by which to solve this drawback, but the formed hydrogel inks are not printable.
View Article and Find Full Text PDF