A 96-h exposure experiment was conducted to elucidate the toxicity responses of the marine diatom Thalassiosira pseudonana upon exposure to different temperatures and copper (Cu) concentrations. Three Cu treatments (seawater control; 200μg/L Cu, EC for the yield at 25°C; and 1000μg/L Cu, EC for growth inhibition at 25°C) were conducted against four temperatures (10°C, 15°C, 25°C and 30°C). Growth rate and photosynthetic responses showed a significant interacting thermal-chemical effect with strong synergistic responses observed at 30°C treatments.
View Article and Find Full Text PDFAlthough triphenyltin (TPT) compounds are ubiquitous pollutants in urbanised coastal environments in Asian regions, their toxicities to marine organisms are still poorly known. This study was designed to investigate the toxicity of triphenyltin chloride (TPTCl) on the rotifer Brachionus koreanus across different levels of biological organisation. Firstly, we concurrently performed a 24 h static-acute toxicity test and a 6-day semi-static multigenerational life-cycle test using the rotifer.
View Article and Find Full Text PDFTriphenyltin compounds (TPTs), as effective biocides for different industrial and agricultural purposes, have been detected in coastal marine environments worldwide, in particular in Asian countries. However, little is known about their toxicity to marine organisms. This study comprehensively investigated the molecular, individual and population responses of the marine copepod, Tigriopus japonicus upon waterborne exposure to TPT chloride (TPTCl).
View Article and Find Full Text PDFThis study aimed to investigate the responses of the marine diatom Thalassiosira pseudonana upon waterborne exposure to triphenyltin chloride (TPTCl) through determining their photosynthetic response, growth performance, and expressions of genes and proteins. Based on the growth inhibition test, the 96-h IC50 (i.e.
View Article and Find Full Text PDFThe state of scientific knowledge regarding analytical methods, environmental fate, ecotoxicity and ecological risk of triphenyltin (TPT) compounds in marine ecosystems as well as their exposure and health hazard to humans was reviewed. Since the 1960s, TPT compounds have been commonly applied as biocides for diverse industrial and agricultural purposes. For instance, they are used as active ingredients in antifouling systems on marine vessels and mariculture facilities, and as fungicides in agriculture.
View Article and Find Full Text PDF