We recorded the time series of location data from stationary, single-frequency (L1) GPS positioning systems at a variety of geographic locations. The empirical autocorrelation function of these data shows significant temporal correlations. The Gaussian white noise model, widely used in sensor-fusion algorithms, does not account for the observed autocorrelations and has an artificially large variance.
View Article and Find Full Text PDFWe provide algorithms for inferring GPS (Global Positioning System) location and for quantifying the uncertainty of this estimate in real time. The algorithms are tested on GPS data from locations in the Southern Hemisphere at four significantly different latitudes. In order to rank the algorithms, we use the so-called log-score rule.
View Article and Find Full Text PDF