The initial rise of molecular oxygen (O) shortly after the Archaean-Proterozoic transition 2.5 billion years ago was more complex than the single step-change once envisioned. Sulfur mass-independent fractionation records suggest that the rise of atmospheric O was oscillatory, with multiple returns to an anoxic state until perhaps 2.
View Article and Find Full Text PDFPlate subduction greatly influences the physical and chemical characteristics of Earth's surface and deep interior, yet the timing of its initiation is debated because of the paucity of exposed rocks from Earth's early history. We show that the titanium isotopic composition of orthogneisses from the Acasta Gneiss Complex spanning the Hadean to Eoarchean transition falls on two distinct magmatic differentiation trends. Hadean tonalitic gneisses show titanium isotopic compositions comparable to modern evolved tholeiitic magmas, formed by differentiation of dry parental magmas in plume settings.
View Article and Find Full Text PDFThe role that iron played in the oxygenation of Earth's surface is equivocal. Iron could have consumed molecular oxygen when Fe-oxyhydroxides formed in the oceans, or it could have promoted atmospheric oxidation by means of pyrite burial. Through high-precision iron isotopic measurements of Archean-Paleoproterozoic sediments and laboratory grown pyrites, we show that the triple iron isotopic composition of Neoarchean-Paleoproterozoic pyrites requires both extensive marine iron oxidation and sulfide-limited pyritization.
View Article and Find Full Text PDF