The design of blast-resistant structures and protective systems requires a firm understanding of the loadings imparted to structures by blast waves. While empirical methods can reliably predict these loadings in the far field, there is currently a lack of understanding on the pressures experienced in the very near field, where physics-based numerical modelling and semi-empirical fast-running engineering model predictions can vary by an order of magnitude. In this paper, we present the design of an experimental facility capable of providing definitive spatially and temporally resolved reflected pressure data in the extreme near field (Z<0.
View Article and Find Full Text PDFWhile it is well known that detonation of shallow-buried high explosive charges generally results in above-surface loading which is greatly amplified compared with the same detonation in air, uncertainty persists as to the mechanisms leading to this effect. The work presented in this paper is a systematic investigation into the mechanisms of load transfer in buried blast events. This paper details the results from a parametric study into the mechanisms and magnitudes of load transfer following a shallow-buried explosion, where spatial and temporal load distributions are directly measured on a rigid surface using an array of Hopkinson pressure bars.
View Article and Find Full Text PDFProc Math Phys Eng Sci
September 2018
Long-span bridges have traditionally employed suspension or cable-stayed forms, comprising vertical pylons and networks of cables supporting a bridge deck. However, the optimality of such forms over very long spans appears never to have been rigorously assessed, and the theoretically optimal form for a given span carrying gravity loading has remained unknown. To address this we here describe a new numerical layout optimization procedure capable of intrinsically modelling the self-weight of the constituent structural elements, and use this to identify the form requiring the minimum volume of material for a given span.
View Article and Find Full Text PDF