Biomimetics (Basel)
October 2024
Over the last few years, there has been much effort put into the development and validation of stochastic models of the trajectories of swarming insects. These models typically assume that the positions and velocities of swarming insects can be represented by continuous jointly Markovian processes. These models are first-order autoregressive processes.
View Article and Find Full Text PDFBMJ Open Sport Exerc Med
March 2024
Recently Cavagna et al. (Sci Rep 13(1): 8745, 2023) documented the swarming behaviors of laboratory-based Anopheles gambiae mosquitoes. Here key observations from this 3D-video tracking study are reproduced by a minimally structured (maximum entropy) stochastic trajectory model.
View Article and Find Full Text PDFIn contrast with laboratory insect swarms, wild insect swarms display significant coordinated behaviour. It has been hypothesised that the presence of a fluctuating environment drives the formation of transient, local order (synchronized subgroups), and that this local order pushes the swarm into a new state that is robust to environmental perturbations. The hypothesis is supported by observations of swarming mosquitoes.
View Article and Find Full Text PDFMurmurations along with other forms of flocking have come to epitomize collective animal movements. Most studies into these stunning aerial displays have aimed to understand how coherent motion may emerge from simple behavioral rules and behavioral correlations. These studies may now need revision because recently it has been shown that flocking birds, like swarming insects, behave on the average as if they are trapped in elastic potential wells.
View Article and Find Full Text PDFConsiderable progress has been made in understanding insect swarms-forms of collective animal behaviour that unlike bird flocks, fish schools and animal herds do not possess global order. Nonetheless, little is known about swarm formation. Here we posit a mechanism for the formation of insect swarms that is consistent with recent empirical observations reported by (Patel and Ouellette 2022).
View Article and Find Full Text PDFIntroduction: Pectoralis major (PM) rupture is a severe injury that untreated can lead to a profound functional deficit. Early surgical repair can greatly improve outcomes and give a more predictable timetable for recovery, making this the goal of current treatment. Surgical intervention is also essential to return professional athletes to their previous level of competition.
View Article and Find Full Text PDFPhys Biol
September 2022
In his insightful and timely review Ouellette (2022021004) noted three theoretical impediments to progress in understanding and modelling collective animal behavior. Here through novel analyses and by drawing on the latest research I show how these obstacles can be either overcome or negated. I suggest ways in which recent advances in the physics of collective behavior provide significant biological information.
View Article and Find Full Text PDFCollective behaviour can be difficult to discern because it is not limited to animal aggregations such as flocks of birds and schools of fish wherein individuals spontaneously move in the same way despite the absence of leadership. Insect swarms are, for example, a form of collective behaviour, albeit one lacking the global order seen in bird flocks and fish schools. Their collective behaviour is evident in their emergent macroscopic properties.
View Article and Find Full Text PDFSinhuber et al. (Sci Rep 11:3773, 2021) formulated an equation of state for laboratory swarms of the non-biting midge Chironomus riparius that holds true when the swarms are driven through thermodynamic cycles by the application external perturbations. The findings are significant because they demonstrate the surprising efficacy of classical equilibrium thermodynamics for quantitatively characterizing and predicting collective behaviour in biology.
View Article and Find Full Text PDFWeierstrassian Lévy walks are one of the simplest random walks which do not satisfy the central limit theorem and have come to epitomize scale invariance even though they were initially regarded as being a mathematical abstraction. Here, I show how these Lévy walks can be generated intrinsically as a by-product of crawling, a common but ancient form of locomotion. This may explain why Weierstrassian Lévy walks provide accurate representations of the movement patterns of a diverse group of molluscs-certain mussels, mud snails and limpets.
View Article and Find Full Text PDFAs the number or density of interacting individuals in a social group increases, a transition can develop from uncorrelated and disordered behavior of the individuals to a collective coherent pattern. We expand this observation by exploring the fine details of termite movement patterns to demonstrate that the value of the scaling exponent μ of a power law describing the Lévy walk of an individual is modified collectively as the density of animals in the group changes. This effect is absent when termites interact with inert obstacles.
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2021
Intrinsic stochasticity associated with finite population size is fundamental to the emergence of collective behaviours in insect swarms. It has been assumed that this intrinsic stochasticity is purely additive (position independent) in quiescent (unperturbed) swarms. Here, I identify the hallmarks of intrinsic multiplicative (position dependent) stochasticity and show that they are evident in quiescent laboratory swarms of the non-biting midge Chironomus riparius.
View Article and Find Full Text PDFHuge numbers of insects migrate over considerable distances in the stably-stratified night-time atmosphere with great consequences for ecological processes, biodiversity, ecosystem services and pest management. We used a combination of meteorological radar and lidar instrumentation at a site in Oklahoma, USA, to take a new look at the general assistance migrants receive from both vertical and horizontal airstreams during their long-distance flights. Movement in the nocturnal boundary layer (NBL) presents very different challenges for migrants compared to those prevailing in the daytime convective boundary layer, but we found that Lagrangian stochastic modelling is effective at predicting flight manoeuvers in both cases.
View Article and Find Full Text PDFOkubo (Okubo 1986 , 1-94. (doi:10.1016/0065-227X(86)90003-1)) was the first to propose that insect swarms are analogous to self-gravitating systems.
View Article and Find Full Text PDFTraditionally animal groups have been characterized by the macroscopic patterns that they form. It is now recognised that such patterns convey limited information about the nature of the aggregation as a whole. Aggregate properties cannot be determined by passive observations alone; instead one must interact with them.
View Article and Find Full Text PDFThe dispersal of animals from their birth place has profound effects on the immediate survival and longer-term persistence of populations. Molecular studies have estimated that bumblebee colonies can be established many kilometers from their queens' natal nest site. However, little is known about when and how queens disperse during their lifespan.
View Article and Find Full Text PDFLagrangian stochastic models for simulation of tracer-particle trajectories in turbulent flows can be adapted for simulation of particle trajectories. This is conventionally done by replacing the zero-mean fall speed of a tracer-particle with the terminal speed of the particle. Such models have been used widely to predict spore and pollen dispersal.
View Article and Find Full Text PDFAfter foraging in the open ocean pelagic birds can pinpoint their breeding colonies, located on remote islands in visually featureless seascapes. This remarkable ability to navigate over vast distances has been attributed to the birds being able to learn an olfactory map on the basis of wind-borne odors. Odor-cued navigation has been linked mechanistically to displacements with exponentially-truncated power-law distributions.
View Article and Find Full Text PDFAbstract: The correlated random walk paradigm is the dominant conceptual framework for modeling animal movement patterns. Nonetheless, we do not know whether the randomness is apparent or actual. Apparent randomness could result from individuals reacting to environmental cues and their internal states in accordance with some set of behavioral rules.
View Article and Find Full Text PDFMovement patterns resembling Lévy walks, often attributed to the execution of an advantageous probabilistic searching strategy, are found in a wide variety of organisms, from cells to human hunter-gatherers. It has been suggested that such movement patterns may be fundamental to how humans interact and experience the world and that they may have arisen early in our genus with the evolution of a hunting and gathering lifestyle. Here we show that Lévy walks are evident in the Me'Phaa of Mexico, in Brazilian Cariri farmers and in Amazonian farmers when gathering firewood, wild fruit and nuts.
View Article and Find Full Text PDFLévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups.
View Article and Find Full Text PDFIn fine warm weather, the daytime convective atmosphere over land areas is full of small migrant insects, among them serious pests (e.g. some species of aphid), but also many beneficial species (e.
View Article and Find Full Text PDFWeierstrassian Lévy walks are the archetypical form of random walk that do not satisfy the central limit theorem and are instead characterized by scale invariance. They were originally regarded as a mathematical abstraction but subsequent theoretical studies showed that they can, in principle, at least, be generated by chaos. Recently, Weierstrassian Lévy walks have been found to provide accurate representations of the movement patterns of mussels () and mud snails () recorded in the laboratory under controlled conditions.
View Article and Find Full Text PDF