Publications by authors named "Andy Noble"

This report contains a description of physiological and motion data, recorded simultaneously and in synchrony using the hyperscanning method from two professional dancers using wireless mobile brain-body imaging (MoBI) technology during rehearsals and public performances of "LiveWire" - a new composition comprised of five choreographed music and dance sections inspired by neuroscience principles. Brain and ocular activity were measured using 28-channel scalp electroencephalography (EEG), and 4-channel electrooculography (EOG), respectively; and head motion was recorded using an inertial measurement unit (IMU) placed on the forehead of each dancer. Video recordings were obtained for each session to allow for tagging of physiological and motion signals and for behavioral analysis.

View Article and Find Full Text PDF

The coordination modes of copper(II) complexes of Schiff base-derived coumarin ligands, which had previously shown good anti-Candida activity, were investigated by pH-potentiometric and UV-Vis spectroscopic methods. These studies confirmed the coordination mode of the ligands to be through the N of the imine and deprotonated phenol of the coumarin-derived ligand in solution. In addition, the more active complexes and their corresponding ligands were investigated in the presence of copper(II) in liquid and frozen solution by ESR spectroscopic methods.

View Article and Find Full Text PDF

The bis-terdentate pyrazole-based ligand 3,5-bis{[N-(2-pyridylmethyl)amino]methyl}-1H-pyrazole (PMAPH) was synthesized from 3,5-(1H)-pyrazoledicarbaldehyde and 2 equiv of 2-(aminomethyl)pyridine, using sodium borohydride to reduce the imine intermediate. A family of dinuclear complexes [M(II/III)(2)(PMAP)(2)](X)(2/4) was prepared by 2:2:2 reactions of MX(2)/PMAPH/base, where M = Zn(II) and X = BF(4)(-); M = Cu(II) and X = ClO(4)(-), BF(4)(-), OAc(-), NO(3)(-); M = Ni(II), Fe(III) and X = ClO(4)(-), BF(4)(-); M = Fe(II) and X = SbF(6)(-). Single crystal X-ray structure determinations on four complexes: [Fe(III)(2)(PMAP)(2)](BF(4))(4).

View Article and Find Full Text PDF

The condensation of 7-amino-4-methyl-coumarin (1) with a number of substituted salicylaldehydes yielded a series of Schiff bases (2a-2k) in good yields. Subsequent reaction of these ligands with copper(II) acetate yielded Cu(II) complexes (3a-3k) and some were characterised using X-ray crystallography. All of the free ligands and their metal complexes were tested for their anti-Candida activity.

View Article and Find Full Text PDF

The central objective of the current study was to investigate the potential in vitro anti-proliferative effect of 4-hydroxy-3-nitro-coumarin (hncH), and the mixed-ligand silver (I) complex of 4-oxy-3-nitro-coumarin-bis(phenanthroline), [Ag(hnc)(phen)(2)] using four human-derived model cell lines. In addition, selected mechanistic studies were carried out using the most sensitive of the four cell lines. Results obtained show that the complex could decrease the proliferation of all four cell lines including neoplastic renal and hepatic, namely A-498 and HepG(2) cells, respectively, along with two non-neoplastic renal and hepatic cell lines, HK-2 and Chang, respectively.

View Article and Find Full Text PDF

The first dinuclear iron(II) complexes of any 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazole ligands, [Fe(II)2(adpt)2(H2O)1.5(CH3CN)2.5](BF4)4 and [Fe(II)2(pldpt)2(H2O)2(CH3CN)2](BF4)4, are presented [where adpt is 4-amino-3,5-di(2-pyridyl)-4H-1,2,4-triazole and pldpt is 4-pyrrolyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole].

View Article and Find Full Text PDF

Two stepwise approaches to preparing large unsymmetrical macrocycles incorporating diethylenetriamine lateral units are described: the first utilises protecting group chemistry, whereas the second exploits irreversible amide bond formation in the presence of an excess of the amine. In the first approach condensation of two equivalents of N-acetyldiethylenetriamine 1 with 2,6-diformyl-4-methylphenol, followed by a sodium borohydride reduction of the newly formed imine bonds and acidic removal of the protecting groups, yields a phenol-containing "two-armed" precursor as an HCl salt 2. Using the second approach the new pyridine-containing "two-armed" precursor , is prepared from 2,6-dimethylpyridinedicarboxylate and an excess of diethylenetriamine.

View Article and Find Full Text PDF

The central objective of the current study was to investigate the potential in vitro anti-proliferative effect of the parent ligand, 4-methylcoumarin-6,7-dioxyacyeic acid (4-MecdoaH(2)), and its copper (II) complex, bis(phenanthroline4-methylcoumarin-6,7-dioxacetatocopper(II) ([Cu(4-Mecdoa)(phen)(2)]) using four human model cell lines. In addition, selected mechanistic studies were carried out using the most sensitive of the four cell lines. Results obtained show that the complex could alter proliferation of both human neoplastic renal (A-498) and hepatic (HepG2) cells.

View Article and Find Full Text PDF
Article Synopsis
  • Two new coumarin-based ligands, cdoaH(2) and 4-MecdoaH(2), were synthesized and reacted with copper(II) and manganese(II) salts to create various metal complexes characterized through multiple analytical techniques.
  • The metal complexes exhibited a polymeric structure and when combined with the ligand 1,10-phenanthroline, formed two additional complexes with confirmed trigonal bipyramidal geometries.
  • Antimicrobial testing revealed that the metal-free ligands showed activity against several microbes, while the complexes exhibited varying levels of effectiveness, with certain phen adducts showing significant activity against MRSA and Candida comparable to commercial antifungal treatments.
View Article and Find Full Text PDF

The central objective of the current study was to investigate the potential in vitro anti-proliferative properties of the parent ligand, coumarin-dioxy-acetic acid (cdoaH(2)), and its copper complex, copper-coumarin-dioxyacetic acetate-phenathroline ([Cu(cdoa)(phen)(2)]) using four human-derived model cell lines, two neoplastic and two non-neoplastic. In addition, selected mechanistic studies were carried out using one of the neoplastic-derived model cell lines, Hep-G2. Results obtained show that the complex, rather than the ligand, could alter the proliferation of both human neoplastic renal (A-498) and hepatic (Hep-G2) cells.

View Article and Find Full Text PDF

The anti-fungal activity and mode of action of a range of silver(I)-coumarin complexes was examined. The most potent silver(I)-coumarin complexes, namely 7-hydroxycoumarin-3-carboxylatosilver(I), 6-hydroxycoumarin-3-carboxylatosilver(I) and 4-oxy-3-nitrocoumarinbis(1,10-phenanthroline)silver(I), had MIC80 values of between 69.1 and 4.

View Article and Find Full Text PDF

Dicopper(II) complexes of two new 3,5-disubstituted-pyrazole-based ligands, bis(quadridentate) macrocyclic ligand (L1)(2-) and bis(terdentate) acyclic ligand (L2)(-), were synthesised by Schiff base condensation of 3,5-diformylpyrazole and either one equivalent of 1,3-diaminopropane or two equivalents of 2-(2-aminoethyl)pyridine in the presence of one or two equivalents of copper(II) ions, respectively. Copper(II) acetate monohydrate was employed in the synthesis of [Cu(2)(L1)(OAc)(2)], [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] and [Cu(II)(2)(L1)(NCS)(2)]; in the last of these one equivalent of NaNCS per copper(II) ion was also added. The fourth complex, [Cu(2)(L2)(NCS)(2)(DMF)]BF(4), was prepared using copper(II) tetrafluoroborate hexahydrate, along with two equivalents of NaOH and six of NaSCN.

View Article and Find Full Text PDF

Previously our research group has studied the anti-proliferative effects of a series of hydroxylated derivatives and silver (I) complexes of coumarin-3-carboxylic acid (C-3-COOH) using two human-derived carcinoma cell lines (A-498 and Hep-G2). Results obtained suggested that both hydroxylation and complexation with silver served to significantly augment the cytotoxic properties of C-3-COOH, to yield a compound, namely 6-hydroxycoumarin-3-carboxylatosilver (6-OH-C-COO-Ag) which could act as a potent and cyto-selective agent, capable of killing cancer cells, and with limited toxicity to cells derived from normal tissue. Here we seek to expand on these findings by probing the molecular mechanism underlying this effect.

View Article and Find Full Text PDF

The chemotherapeutic potential of coumarin-3-carboxylic acid (C-3-COOH) and a series of three hydroxylated coumarin-3-carboxylic acid ligands, namely 6-hydroxy-coumarin-3-carboxylic acid (6-OH-C-3-COOH), 7-hydroxy-coumarin-3-carboxylic acid (7-OH-C-3-COOH) and 8-hydroxy-coumarin-3-carboxylic acid (8-OH-C-3-COOH), along with their corresponding silver-based complexes, namely 6-hydroxycoumarin-3-carboxylatosilver (6-OH-C-COO-Ag), 7-hydroxycoumarin-3-carboxylatosilver (7-OH-C-COO-Ag) and 8-hydroxycoumarin-3-carboxylatosilver (8-OH-C-COO-Ag), was determined using two human-derived carcinoma (A-498 and Hep-G2), along with two non-carcinoma human-derived cell lines (CHANG and HK-2). All of the ligands and their silver complexes induced a concentration-dependent cytotoxic effect. Furthermore, hydroxylation of C-3-COOH and its subsequent complexation with silver led to the production of a series of compounds with dramatically enhanced cytotoxicity, with 6-OH-C-3-COO-Ag having the greatest activity.

View Article and Find Full Text PDF