Publications by authors named "Andy Liwang"

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism.

View Article and Find Full Text PDF

The single-celled cyanobacterium, , generates circadian rhythms with exceptional fidelity and synchrony despite their femtoliter volumes. Here, we explore the mechanistic aspects of this fidelity, by reconstituting the KaiABC post-translational oscillator (PTO) in cell-mimetic giant vesicles (GUVs) under well-defined conditions . PTO proteins were encapsulated with a coefficient of variation that closely matched protein variations observed in live cells.

View Article and Find Full Text PDF

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Circadian clocks have evolved in various organisms to adapt to daily changes in light and temperature due to Earth's rotation, helping synchronize behavior and physiology with environmental rhythms.
  • The cyanobacterial clock is a key model for studying circadian rhythms, as it can be fully reconstructed outside of living organisms.
  • Recent advancements in biochemical, biophysical, and mathematical techniques have improved our understanding of the molecular mechanisms of cyanobacterial Kai proteins, offering insights that may help answer ongoing questions in circadian biology.
View Article and Find Full Text PDF

Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells.

View Article and Find Full Text PDF

The circadian system of the cyanobacterium PCC 7942 relies on a three-protein nanomachine (KaiA, KaiB, and KaiC) that undergoes an oscillatory phosphorylation cycle with a period of ~24 h. This core oscillator can be reconstituted in vitro and is used to study the molecular mechanisms of circadian timekeeping and entrainment. Previous studies showed that two key metabolic changes that occur in cells during the transition into darkness, changes in the ATP/ADP ratio and redox status of the quinone pool, are cues that entrain the circadian clock.

View Article and Find Full Text PDF

The AAA family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI.

View Article and Find Full Text PDF

Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that provides structural and dynamic information on unpaired spins and their surrounding environments. Introduction of exogenous spin labels via site directed spin labeling (SDSL) enables characterization of systems of interests lacking intrinsic unpaired spins. This chapter describes the use of SDSL in quantifying KaiB-KaiC binding in the cyanobacterial circadian clock (Kai Clock), exploiting the changes in mobility of the local environment around the spin label on KaiB-KaiC interactions.

View Article and Find Full Text PDF

As the only circadian oscillator that can be reconstituted with its constituent proteins KaiA, KaiB, and KaiC using ATP as an energy source, the cyanobacterial circadian oscillator serves as a model system for detailed mechanistic studies of day-night transitions of circadian clocks in general. The day-to-night transition occurs when KaiB forms a night-time complex with KaiC to sequester KaiA, the latter of which interacts with KaiC during the day to promote KaiC autophosphorylation. However, how KaiB forms the complex with KaiC remains poorly understood, despite the available structures of KaiB bound to hexameric KaiC.

View Article and Find Full Text PDF

Circadian clocks control gene expression to provide an internal representation of local time. We report reconstitution of a complete cyanobacterial circadian clock in vitro, including the central oscillator, signal transduction pathways, downstream transcription factor, and promoter DNA. The entire system oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of each component simultaneously without user intervention.

View Article and Find Full Text PDF

NMR studies can provide unique information about protein conformations in solution. In CASP14, three reference structures provided by solution NMR methods were available (T1027, T1029, and T1055), as well as a fourth data set of NMR-derived contacts for an integral membrane protein (T1088). For the three targets with NMR-based structures, the best prediction results ranged from very good (GDT_TS = 0.

View Article and Find Full Text PDF

Proteins that can reversibly alternate between distinctly different folds under native conditions are described as being metamorphic. The "metamorphome" is the collection of all metamorphic proteins in the proteome, but it remains unknown the extent to which the proteome is populated by this class of proteins. We propose that uncovering the metamorphome will require a synergy of computational screening of protein sequences to identify potential metamorphic behavior and validation through experimental techniques.

View Article and Find Full Text PDF

In a recent study, Dishman et al. resurrected ancestors of the metamorphic chemokine, XCL1, inferred through phylogenetics, and found that metamorphism arose in the XCL1 lineage ~150 million years ago. A zigzagging evolutionary path suggests that the metamorphic properties are adaptive and reveals three design principles that could be used for technological applications.

View Article and Find Full Text PDF

Protein secretion as well as the assembly of bacterial motility appendages are central processes that substantially contribute to fitness and survival. This study highlights distinctive features of the mechanism that serves these functions in cyanobacteria, which are globally prevalent photosynthetic prokaryotes that significantly contribute to primary production. Our studies of biofilm development in the cyanobacterium uncovered a novel component required for the biofilm self-suppression mechanism that operates in this organism.

View Article and Find Full Text PDF

Stochastic diffusion of a solution of fluorophores after photoselection reduces the polarization of emission, or fluorescence anisotropy. Because this randomization process is slower for larger molecules, fluorescence anisotropy is effective for measuring the kinetics of protein-binding events. Here, we describe how to use the technique to carry out real-time observations in vitro of the cyanobacterial circadian clock.

View Article and Find Full Text PDF

Biofilms are accumulations of microorganisms embedded in extracellular matrices that protect against external factors and stressful environments. Cyanobacterial biofilms are ubiquitous and have potential for treatment of wastewater and sustainable production of biofuels. But the underlying mechanisms regulating cyanobacterial biofilm formation are unclear.

View Article and Find Full Text PDF

An increasing number of proteins have been demonstrated in recent years to adopt multiple three-dimensional folds with different functions. These metamorphic proteins are characterized by having two or more folds with significant differences in their secondary structure, in which each fold is stabilized by a distinct local environment. So far, ∼90 metamorphic proteins have been identified in the Protein Databank, but we and others hypothesize that a far greater number of metamorphic proteins remain undiscovered.

View Article and Find Full Text PDF

Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phosphorylation can be reconstituted in vitro.

View Article and Find Full Text PDF

The cyanobacterial circadian clock in consists of three proteins, KaiA, KaiB, and KaiC. KaiA and KaiB rhythmically interact with KaiC to generate stable oscillations of KaiC phosphorylation with a period of 24 h. The observation of stable circadian oscillations when the three clock proteins are reconstituted and combined in vitro makes it an ideal system for understanding its underlying molecular mechanisms and circadian clocks in general.

View Article and Find Full Text PDF

Uniquely, the circadian clock of cyanobacteria can be reconstructed outside the complex milieu of live cells, greatly simplifying the investigation of a functioning biological chronometer. The core oscillator component is composed of only three proteins, KaiA, KaiB, and KaiC, and together with ATP they undergo waves of assembly and disassembly that drive phosphorylation rhythms in KaiC. Typically, the time points of these reactions are analyzed ex post facto by denaturing polyacrylamide gel electrophoresis, because this technique resolves the different states of phosphorylation of KaiC.

View Article and Find Full Text PDF

The recurrent pattern of light and darkness generated by Earth's axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium PCC 7942 is an excellent model system for dissecting these entwined mechanisms.

View Article and Find Full Text PDF

Circadian rhythms enable cells and organisms to coordinate their physiology with the cyclic environmental changes that come as a result of Earth's light/dark cycles. Cyanobacteria make use of a post-translational oscillator to maintain circadian rhythms, and this elegant system has become an important model for circadian timekeeping mechanisms. Composed of three proteins, the KaiABC system undergoes an oscillatory biochemical cycle that provides timing cues to achieve a 24-h molecular clock.

View Article and Find Full Text PDF

Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes.

View Article and Find Full Text PDF

Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation.

View Article and Find Full Text PDF