Publications by authors named "Andy K L Nguy"

Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC.

View Article and Find Full Text PDF

Vancomycin is one of the most important clinical antibiotics in the fight against infectious disease. Its biological activity relies on three aromatic cross-links, which create a cup-shaped topology and allow tight binding to nascent peptidoglycan chains. The cytochrome P450 enzymes OxyB, OxyA, and OxyC have been shown to introduce these synthetically challenging aromatic linkages.

View Article and Find Full Text PDF

We report a general method for synthesizing diverse d-Tyr analogues, one of the constituents of the antibiotic vancomycin, using a Negishi cross-coupling protocol. Several analogues were incorporated into the vancomycin substrate-peptide and reacted with the biosynthetic enzymes OxyB and OxyA, which install the characteristic aromatic cross-links. We find that even small structural perturbations are not accepted by OxyA.

View Article and Find Full Text PDF

Tyramine β-monooxygenase (TβM) belongs to a family of physiologically important dinuclear copper monooxygenases that function with a solvent-exposed active site. To accomplish each enzymatic turnover, an electron transfer (ET) must occur between two solvent-separated copper centers. In wild-type TβM, this event is too fast to be rate limiting.

View Article and Find Full Text PDF