Mar Biotechnol (NY)
February 2014
The common blue mussel, Mytilus edulis, has a bimineralic shell composed of approximately equal proportions of the two major polymorphs of calcium carbonate: calcite and aragonite. The exquisite biological control of polymorph production is the focus of research interest in terms of understanding the details of biomineralisation and the proteins involved in the process of complex shell formation. Recent advances in ease and availability of pyrosequencing and assembly have resulted in a sharp increase in transcriptome data for invertebrate biominerals.
View Article and Find Full Text PDFBiominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure.
View Article and Find Full Text PDFBiomineralization is the process where biological systems produce well-defined composite structures such as shell, teeth, and bones. Currently, there is substantial momentum to investigate the processes implicated in biomineralization and to unravel the complex roles of proteins in the control of polymorph switching. An understanding of these processes may have wide-ranging significance in health care applications and in the development of advanced materials.
View Article and Find Full Text PDF