Assessing sleep posture, a critical component in sleep tests, is crucial for understanding an individual's sleep quality and identifying potential sleep disorders. However, monitoring sleep posture has traditionally posed significant challenges due to factors such as low light conditions and obstructions like blankets. The use of radar technolsogy could be a potential solution.
View Article and Find Full Text PDFThe accuracy of sleep posture assessment in standard polysomnography might be compromised by the unfamiliar sleep lab environment. In this work, we aim to develop a depth camera-based sleep posture monitoring and classification system for home or community usage and tailor a deep learning model that can account for blanket interference. Our model included a joint coordinate estimation network (JCE) and sleep posture classification network (SPC).
View Article and Find Full Text PDF