Publications by authors named "Andy C Tran"

The Mycobacterial growth inhibition assay (MGIA) is an ex-vivo assay used to measure the overall functional immune response elicited by infection or vaccination. In tuberculosis (TB) vaccine development, MGIA is a potentially important tool for preclinical evaluation of early-stage vaccine candidates to complement existing assays, and to potentially reduce the need for lengthy and costly pathogenic Mycobacterium tuberculosis (Mtb) animal challenge experiments. The conventional method of MGIA in mice entails directly infecting mixed cell cultures, most commonly splenocytes, from immunised mice with mycobacteria.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights that culturing Mycobacterium tuberculosis (MTB) remains the best method for diagnosing tuberculosis, but over 40% of samples can't isolate MTB, leaving many infectious cases undetected.
  • Researchers tested two cationic peptides, T14D and TB08L, which can disrupt the mycobacterial membrane, triggering MTB growth and altering its dormant state to a replicative one.
  • The peptides notably improved traditional culture methods, increasing positivity rates by 46% and speeding up results, especially in hard-to-detect sample types like sputum smear-negative and feces.
View Article and Find Full Text PDF

Tuberculosis (TB) is a major global health threat that claims more than one million lives annually. With a quarter of the global population harbouring latent TB, post-exposure vaccination aimed at high-risk populations that could develop active TB disease would be of great public health benefit. Mucosal vaccination is an attractive approach for a predominantly lung disease like TB because it elicits both local and systemic immunity.

View Article and Find Full Text PDF

Introduction: The large family of PE and PPE proteins accounts for as much as 10% of the genome of . In this study, we explored the immunogenicity of three proteins from this family, PE18, PE31, and PPE26, in humans and mice.

Methods: The investigation involved analyzing the immunoreactivity of the selected proteins using sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy donors from the TB endemic country Mozambique.

View Article and Find Full Text PDF

The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells.

View Article and Find Full Text PDF

Tuberculosis remains a major health threat globally and a more effective vaccine than the current Bacillus Calmette Guerin (BCG) is required, either to replace or boost it. The Spore-FP1 mucosal vaccine candidate is based on the fusion protein of Ag85B-Acr-HBHA/heparin-binding domain, adsorbed on the surface of inactivated spores. The candidate conferred significant protection against challenge in naïve guinea pigs and markedly improved protection in the lungs and spleens of animals primed with BCG.

View Article and Find Full Text PDF

Serological antibody profiling of tuberculosis (TB) patients and household contacts with latent TB infection (LTBI) could identify risk indicators of disease progression, and potentially also serve as an easily accessible diagnostic tool to discriminate between these two stages of () infection. Yet, despite significant efforts over many decades, neither application has yet fully materialised, and this is at least in part due to inconsistent and varying antibody profiles from different TB endemic regions. In this study, we conducted a retrospective exploratory analysis of serum antibodies in a cohort of active TB patients (ATB) and their interferon-gamma release assay (IGRA) positive household contacts (LTBI), as well as healthy controls (HC) from Mozambique, a country with a high TB burden from the Sub-Saharan region.

View Article and Find Full Text PDF

Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta.

View Article and Find Full Text PDF

New evidence has been emerging that antibodies can be protective in various experimental models of tuberculosis. Here, we report on protection against multidrug-resistant (MDR-TB) infection using a combination of the human monoclonal IgA 2E9 antibody against the alpha-crystallin (Acr, HspX) antigen and mouse interferon-gamma in mice transgenic for the human IgA receptor, CD89. The effect of the combined mucosal IgA and IFN-γ; treatment was strongest (50-fold reduction) when therapy was applied at the time of infection, but a statistically significant reduction of lung bacterial load was observed even when the therapy was initiated once the infection had already been established.

View Article and Find Full Text PDF

The best way to debunk a scientific dogma is to throw irrefutable evidence at it. This is especially true if the dogma in question has been nurtured over many decades, as is the case with the apparent redundancy of antibodies (Abs) against intracellular pathogens. Although not fully compelling yet, that 'hard core' evidence is nevertheless now slowly beginning to emerge.

View Article and Find Full Text PDF

Vaccination is considered the most effective strategy for controlling tuberculosis (TB). The existing vaccine, the Bacille Calmette-Guérin (BCG), although partially protective, has a number of limitations. Therefore, there is a need for developing new TB vaccines and several strategies are currently exploited including the use of viral and bacterial delivery vectors.

View Article and Find Full Text PDF

Liposomes have been long considered as a vaccine delivery system but this technology remains to be fully utilized. Here, we describe a novel liposome-based subunit vaccine formulation for tuberculosis (TB) based on phosphatidylserine encapsulating two prominent TB antigens, Ag85B, and ESAT-6. We show that the resulting liposomes (Lipo-AE) are stable upon storage and can be readily taken up by antigen presenting cells and that their antigenic cargo is delivered and processed within endosomal cell compartments.

View Article and Find Full Text PDF

Tuberculosis (TB) is the most deadly infectious disease in existence, and the only available vaccine, (BCG), is almost a century old and poorly protective. The immunological complexity of TB, coupled with rising resistance to antimicrobial therapies, necessitates a pipeline of diverse novel vaccines. Here, we show that spores can be coated with a fusion protein 1 ("FP1") consisting of (Mtb) antigens Ag85B, ACR, and HBHA.

View Article and Find Full Text PDF