Disparities in health or well-being experienced by minority groups can be difficult to study using the traditional exposure-outcome paradigm in causal inference, since potential outcomes in variables such as race or sexual minority status are challenging to interpret. Causal decomposition analysis addresses this gap by positing causal effects on disparities under interventions to other intervenable exposures that may play a mediating role in the disparity. While invoking weaker assumptions than causal mediation approaches, decomposition analyses are often conducted in observational settings and require uncheckable assumptions that eliminate unmeasured confounders.
View Article and Find Full Text PDF