Publications by authors named "Andueza D"

Spectral analysis of meat combined with chemometric analysis has been identified as a promising tool for authenticating livestock-animal diets. The objectives of this study were (i) to determine whether the visible-NIR spectrum of perirenal adipose tissue (PAT) and caudal adipose tissue (CAT) can reliably discriminate lambs pasture-finished for different durations before slaughter, and (ii) to analyze the kinetics of appearance and stabilization of the visible-NIR spectrum-based pasture signature in PAT and CAT. Four groups of 50-55 lambs were used over three years: lambs finished on lucerne pasture for 0 (L0, concentrate-fed in stall), 21 (L21), 42 (L42) and 63 (L63) days before slaughter.

View Article and Find Full Text PDF

The purpose of this work was to assess the potential of 2T2D COS PLS-DA (two-trace two-dimensional correlation spectroscopy and partial least squares discriminant analysis) in conjunction with Visible Near infrared multispectral imaging (MSI) as a quick, non-destructive, and precise technique for classifying three beef muscles -Longissimus thoracis, Semimembranosus, and Biceps femoris- obtained from three breeds - the Blonde d'Aquitaine, Limousine, and Aberdeen Angus. The experiment was performed on 240 muscle samples. Before performing PLS-DA, spectra were extracted from MSI images and processed by SNV (Standard Normal Variate), MSC (Multivariate Scattering Correction) or AREA (area under curve equal 1) and converted in synchronous and asynchronous 2T2D COS maps.

View Article and Find Full Text PDF

Pasture-based livestock systems are considered environmentally-sustainable and welfare-friendly farming systems that can meet consumer demand for good-quality produce. However, trust in products labelled as 'grass-fed' depends on the ability to reliably authenticate pasture origin. The two objectives of this study were (i) to test the ability of visible spectroscopy combined with discriminant analysis on lamb perirenal fat (PF), dorsal fat (DF) and longissimus thoracis et lumborum muscle to discriminate different durations of pasture-finishing; and (ii) to determine the timing of appearance of the pasture signature and its stabilization in these tissues.

View Article and Find Full Text PDF

Only few studies have used Near-Infrared (NIR) spectroscopy to assess meat quality traits directly in the chiller. The aim of this study was therefore to investigate the ability of a handheld NIR spectrometer to predict marbling scores on intact meat muscles in the chiller. A total of 829 animals from 2 slaughterhouses in France and Italy were involved.

View Article and Find Full Text PDF

This study compared the performance of near-infrared spectroscopy (NIRS) models on fresh and freeze-dried beef muscle samples to predict intramuscular connective tissue (IMCT) components and to determine whether the accuracy of the models differed among different muscles from beef cattle. The hypothesis was that the water content of muscle samples would negatively influence the accuracy of the models, which would differ among muscles. Fresh and freeze-dried samples (n = 171) of four muscles were used to develop NIRS models to predict the contents IMCT.

View Article and Find Full Text PDF

The metabolisable energy (ME) content of feeds is a better estimate of their 'true' energy value than their digestible energy (DE) content, because ME takes account of the gross energy of methane (GEgas) and the gross energy of urine (GEurine) losses. The accuracy and precision of the Gesellschaft für Ernährungsphysiologie (GfE) and Institut National de la Recherche Agronomique (INRA) systems for predicting the DE and ME contents of diets for horses were compared using the results of a study comprising 15 mixed diets. The INRA system was more accurate than the GfE system for predicting DE, GEurine and ME: the biases between the predicted and the measured values were -0.

View Article and Find Full Text PDF

The ability of mid-infrared spectroscopy (MIR) to predict indicators (1) of diet composition in dairy herds and (2) for the authentication of the cow feeding restrictions included in the specification of 2 Protected Designation of Origin (PDO) cheeses (Cantal and Laguiole) was tested on 7,607 bulk milk spectra from 1,355 farms located in the Massif Central area of France. For each milk sample, the corresponding cow diet composition data were obtained through on-farm surveys. The cow diet compositions varied largely (i.

View Article and Find Full Text PDF

Until now, there are few information on vitamin B concentration variability in milk. In this study, a novel analytical method to quantify total vitamin B in milk was developed and applied on 676 samples. In parallel, spectral analysis (colorimetry and near infrared spectroscopy) were performed to develop prediction models of vitamin B concentration in milk.

View Article and Find Full Text PDF

The objective of this study was to determine the potential of multispectral imaging (MSI) data recorded in the visible and near infrared electromagnetic regions to predict the structural features of intramuscular connective tissue, the proportion of intramuscular fat (IMF), and some characteristic parameters of muscle fibers involved in beef sensory quality. In order to do this, samples from three muscles ( and ) of animals belonging to three breeds (Aberdeen Angus, Limousine, and Blonde d'Aquitaine) were used (120 samples). After the acquisition of images by MSI and segmentation of their morphological parameters, a back propagation artificial neural network (ANN) model coupled with partial least squares was applied to predict the muscular parameters cited above.

View Article and Find Full Text PDF

Many studies on beef nutritional qualities require the quantification of intramuscular fat. To reduce the sample amount, solvent use and time of analysis, two alternative methods to the Folch et al. (1957) reference method were studied: a miniaturised Folch's method and a near-infrared spectroscopic method.

View Article and Find Full Text PDF

The objective of this work is to compare the ability of three spectroscopy techniques: molecular fluorescence, near-infrared (NIR), and mid-infrared with attenuated total reflectance (MIR-ATR) spectroscopy to predict the concentrations of 8 carotenoids, 6 vitamins and 22 fatty acids (FA) in cow's milk. A dataset was built through the analysis of 242 frozen milk samples from different experiments. The milk compounds were analysed using reference methods and by NIR, MIR-ATR, and fluorescence to establish different predictive models.

View Article and Find Full Text PDF

Secondary compounds of grassland and forage plant species such as vitamins or phenolic compounds are involved in different health-promoting effects in animals. However, information on their concentration and composition in forage plant species remains scarce. The objective of this study was to characterize the composition of secondary compounds of seven grazed cover crop plant species harvested at two stages of growth.

View Article and Find Full Text PDF

Background: The present study aimed to identify relationships between components of intramuscular connective tissue, proportions of the different fiber types, intramuscular fat and sensory tenderness of beef cooked at 55 °C. Accordingly, four muscles differing in their metabolic and contractile properties, as well as in their collagen content and butcher value, were obtained from dairy and beef cattle of several ages and sexes and were then used to create variability.

Results: Correlation analyses and/or stepwise regressions were applied on Z-scores to identify the existing and robust associations.

View Article and Find Full Text PDF

Intramuscular connective tissue (IMCT) is mainly composed of several fibrils (known as total collagen (TCol)) linked between each other by different chemical cross-links (CLs), the whole being embedded in a matrix of proteoglycans (PGs). In the field of beef quality, there is limited information on the role of CLs and PGs. Accordingly, several authors suggest that, to investigate the role of IMCT, it is important to investigate them just like TCol and insoluble collagen (ICol).

View Article and Find Full Text PDF

The accuracy and precision of the National Research Council (NRC), Gesellschaft für Ernährungsphysiologie (GfE) and Institut National de la Recherche Agronomique (INRA) systems for predicting the digestible energy (DE) value of hays were determined from the results of 15 digestibility trials with natural grassland hays and 9 digestibility trials with lucerne hays that all met strict experimental and a tight corpus of methods. The hays were harvested in the temperate zone. They covered broad ranges of chemical composition and DE value.

View Article and Find Full Text PDF

This review is aimed at providing an overview of recent advances made in the field of meat quality prediction, particularly in Europe. The different methods used in research labs or by the production sectors for the development of equations and tools based on different types of biological (genomic or phenotypic) or physical (spectroscopy) markers are discussed. Through the various examples, it appears that although biological markers have been identified, quality parameters go through a complex determinism process.

View Article and Find Full Text PDF

The aim of this study was to compare visible-near-infrared spectroscopy (VIS/NIRS) models developed from fresh or freeze-dried samples for predicting the fatty acid (FA) composition of beef samples. The hypothesis tested is that the removal of water from samples could improve the VIS/NIRS model performance. A total of 454 beef samples obtained from different bovine muscles were used.

View Article and Find Full Text PDF

Residual feed intake (RFI) is an alternative measure of feed efficiency (FE) and is calculated as the difference between actual and expected feed intake. The biological mechanisms underlying animal-to-animal variation in FE are not well understood. The aim of this study was to investigate the digestive ability of beef cows selected for RFI divergence as heifers, using two contrasted diets.

View Article and Find Full Text PDF

Considering the additional market value of pasture meat, many authentication methods were developed to discriminate it from meat produced in conventional systems. The visible reflectance spectroscopy technique has proved its efficiency under European conditions and breeds. The present study tested the reliability of this method to discriminate between pasture-fed (P) and stall-fed (S) lambs under North African conditions and investigated the effect of feeding system (FS) (P v.

View Article and Find Full Text PDF

Carotenoid pigments signature in the fat using visible reflectance spectroscopy has shown high potential for distinguishing pasture-fed (P) from stall concentrate-fed (S) lamb carcasses. However, a recent study demonstrated a between-breed variability in the digestive and metabolic fate of carotenoids pigments. The present study was therefore designed to investigate the extent to which this between-breed variability may affect the reliability of diet authentication using visible spectroscopy of the fat.

View Article and Find Full Text PDF

The efficiency with which ruminants convert feed to desirable products is difficult to measure under normal commercial settings. We explored the use of potential biological markers from easily obtainable samples, that is, blood, hair, and feces, to characterize potential causes of divergent efficiency when considered as residual feed intake (RFI) or feed conversion efficiency (FCE). A total of 54 Charolais bulls, 20 in period 1 and 34 in period 2, were examined for individual dry matter intake (DMI) and growth.

View Article and Find Full Text PDF

The forage feed value determined by organic matter digestibility (OMD) and voluntary intake (VI) is hard and expensive. Thus, several indirect methods such as near infrared reflectance (NIR) spectroscopy have been developed for predicting the feed value of forages. In this study, NIR spectra of 1040 samples of feces from sheep fed fresh temperate forages were used to develop calibration models for the prediction of fecal crude ash (CA), fecal crude protein (CP), fresh forage OMD, and VI.

View Article and Find Full Text PDF

Predicting forage feed value is a vital part of estimating ruminant performances. Most near-infrared (NIR) reflectance calibration models have been developed on oven-dried green forages, but preserved forages such as hays or silages are a significant part of real-world farm practice. Fresh and preserved forages give largely similar fodder, but drying or ensiling processes could modify preserved forage spectra which would make the oven-dried green forage model unsuitable to use on preserved forage samples.

View Article and Find Full Text PDF

Since consumers are showing increased interest in the origin and method of production of their food, it is important to be able to authenticate dietary history of animals by rapid and robust methods used in the ruminant products. Promising breakthroughs have been made in the use of spectroscopic methods on fat to discriminate pasture-fed and concentrate-fed lambs. However, questions remained on their discriminatory ability in more complex feeding conditions, such as concentrate-finishing after pasture-feeding.

View Article and Find Full Text PDF