Publications by authors named "Andrzej Z Pietrzykowski"

microRNA-9 (miR-9) is one of the most abundant microRNAs in the mammalian brain, essential for its development and normal function. In neurons, it regulates the expression of several key molecules, ranging from ion channels to enzymes, to transcription factors broadly affecting the expression of many genes. The neuronal effects of alcohol, one of the most abused drugs in the world, seem to be at least partially dependent on regulating the expression of miR-9.

View Article and Find Full Text PDF

Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers.

View Article and Find Full Text PDF

At the core of the changes characteristic of alcoholism are alterations in gene expression in the brain of the addicted individual. These changes are believed to underlie some of the neuroadaptations that promote compulsive drinking. Unfortunately, the mechanisms by which alcohol consumption produces changes in gene expression remain poorly understood.

View Article and Find Full Text PDF

This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD).

View Article and Find Full Text PDF

Malfunction of synaptic plasticity in different brain regions, including the amygdala plays a role in impulse control deficits that are characteristics of several psychiatric disorders, such as ADHD, schizophrenia, depression and addiction. Previously, we discovered a locus for impulsivity (Impu1) containing the neuregulin 3 (Nrg3) gene, of which the level of expression determines levels of inhibitory control. MicroRNAs (miRNAs) are potent regulators of gene expression, and have recently emerged as important factors contributing to the development of psychiatric disorders.

View Article and Find Full Text PDF

Testosterone plays a key role in preparation of a male domesticated goat (Capra hircus) to breeding season including changes in the urogenital tract of a male goat (buck). microRNAs are important regulators of cellular metabolism, differentiation and function. They are powerful intermediaries of hormonal activity in the body, including the urogenital tract.

View Article and Find Full Text PDF

Background: Voltage-gated calcium channels (VGCCs) in rat neurohypophysial terminals exhibit molecular tolerance to alcohol, including desensitization to the drug and increased current density, after 3 weeks of alcohol drinking. Moreover, after this time, terminals from drinking rats exhibit diminished alcohol inhibition of vasopressin (AVP) release.

Methods: We took advantage of organotypic cultures (explants) of the hypothalamo-neurohypophysial system (HNS) to extend our analysis of molecular tolerance to 2 classes of the VGCC.

View Article and Find Full Text PDF

Alcoholism is a multifactorial disease of unclear molecular underpinnings. Currently, we are witnessing a major shift in our understanding of the functional elements of the genome, which could help us to discover novel insights into the nature of alcoholism. In humans, the vast majority of the genome encodes non-protein-coding DNA with unclear function.

View Article and Find Full Text PDF

Ethanol exerts complex effects on human physiology and health. Ethanol is not only addictive, but it is also a fetal teratogen, an adult neurotoxin, and an etiologic agent in hepatic and cardiovascular disease, inflammation, bone loss, and fracture susceptibility. A large number of genes and signaling mechanisms have been implicated in ethanol's deleterious effects leading to the suggestion that ethanol is a "dirty drug.

View Article and Find Full Text PDF

Tolerance, described as the loss of drug effectiveness over time, is an important component of addiction. The degree of acute behavioral tolerance to alcohol exhibited by a naïve subject can predict the likelihood of alcohol abuse. Thus, the determinants of acute tolerance are important to understand.

View Article and Find Full Text PDF

Tolerance is defined as the diminished response to alcohol or other drugs over the course of repeated or prolonged exposure. This mechanism allows physiological processes to achieve stability in a constantly changing environment. The onset of tolerance may occur within minutes, during a single exposure to alcohol (i.

View Article and Find Full Text PDF

Tolerance represents a critical component of addiction. The large-conductance calcium- and voltage-activated potassium channel (BK) is a well-established alcohol target, and an important element in behavioral and molecular alcohol tolerance. We tested whether microRNA, a newly discovered class of gene expression regulators, plays a role in the development of tolerance.

View Article and Find Full Text PDF

Large-conductance, calcium-activated potassium (BK(Ca)) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper-2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BK(Ca) activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC).

View Article and Find Full Text PDF

Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A.

View Article and Find Full Text PDF

Two well-characterized nongenomic actions of thyroid hormone in cultured brain tissues are: 1) regulation of type 2 iodothyronine 5'deiodinase (D2) activity and 2) regulation of actin polymerization. In particular, the latter is likely to have profound effects on neuronal migration in the developing brain. In this study, we determined whether these nongenomic actions also occurred in vivo during brain development.

View Article and Find Full Text PDF

This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins.

View Article and Find Full Text PDF

The timing of granule cell migration in the developing cerebellum is regulated by thyroid hormone. Granule cell migration depends on the recognition of extracellular neuronal guidance molecule(s), such as laminin, and this, in turn, requires cell surface adhesion molecules (integrins) that are anchored on the cell membrane by the actin cytoskeleton. While many of the actions of thyroid hormone, specifically 3,5,3'-triiodothyronine (T3), are mediated by regulated gene expression, both thyroxine (T4) and 3,3',5'-triiodothyronine (rT3) also exert direct, positive control of the quantity of polymerized actin in cultured astrocytes without affecting gene expression.

View Article and Find Full Text PDF

Tolerance is an important element of drug addiction and provides a model for understanding neuronal plasticity. The hypothalamic-neurohypophysial system (HNS) is an established preparation in which to study the actions of alcohol. Acute application of alcohol to the rat neurohypophysis potentiates large-conductance calcium-sensitive potassium channels (BK), contributing to inhibition of hormone secretion.

View Article and Find Full Text PDF