Publications by authors named "Andrzej T Slominski"

Novel pathways of vitamin D3, lumisterol 3 (L3), and tachysterol 3 (T3) activation have been discovered, initiated by CYP11A1 and/or CYP27A1 in the case of L3 and T3. The resulting hydroxymetabolites enhance protection of skin against DNA damage and oxidative stress; stimulate keratinocyte differentiation; exert anti-inflammatory, antifibrogenic, and anticancer activities; and inhibit cell proliferation in a structure-dependent manner. They act on nuclear receptors, including vitamin D receptor, aryl hydrocarbon receptor, LXRα/β, RAR-related orphan receptor α/γ, and peroxisome proliferator-activated receptor-γ, with selectivity defined by their core structure and distribution of hydroxyl groups.

View Article and Find Full Text PDF

Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems.

View Article and Find Full Text PDF

This article discusses data showing that mammals, including humans, have two sources of melatonin that exhibit different functions. The best-known source of melatonin, herein referred to as Source #1, is the pineal gland. In this organ, melatonin production is circadian with maximal synthesis and release into the blood and cerebrospinal fluid occurring during the night.

View Article and Find Full Text PDF

Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly and other species).

View Article and Find Full Text PDF

Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments.

View Article and Find Full Text PDF

We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)D3, 1,20(OH)D3 and 1,20,23(OH)D3 were compared to those of classical 1,25(OH)D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with , , or CYP27B1 genes knocked down with siRNA.

View Article and Find Full Text PDF
Article Synopsis
  • * Research shows that melatonin and its metabolites activate the AhR in human cells, causing their relocation to the nucleus, which is important for gene regulation.
  • * Additionally, melatonin exhibits agonistic properties on the peroxisome proliferator-activated receptor (PPAR)γ, although the binding affinity is lower compared to stronger agonists like rosiglitazone, indicating potential for broader biological effects.
View Article and Find Full Text PDF
Article Synopsis
  • Melatonin and its derivatives are naturally produced in human skin and have various health benefits, including anti-inflammatory and anti-cancer properties.
  • Research on melanoma cell lines showed that these compounds significantly lower the production of melanin by disrupting important signaling pathways and enzyme activity responsible for pigmentation.
  • The study also indicated that the effects of melatonin on melanin regulation occur through mechanisms that do not involve specific melatonin receptors, suggesting new avenues for treatment strategies targeting melanoma.
View Article and Find Full Text PDF

Melatonin (-acetyl-5-methoxytryptamine) is recognized as an effective antioxidant produced by the pineal gland, brain and peripheral organs, which also has anti-inflammatory, immunomodulatory, and anti-tumour capacities. Melatonin has been reported as a substance that counteracts ultraviolet radiation B (UVB)-induced intracellular disturbances. Nevertheless, the mechanistic actions of related molecules including its kynurenic derivatives (-acetyl--formyl-5-methoxykynurenine (AFMK)), its indolic derivatives (6-hydroxymelatonin (6(OH)MEL) and 5-methoxytryptamine (5-MT)) and its precursor -acetylserotonin (NAS) are only poorly understood.

View Article and Find Full Text PDF

Lumisterol (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D, it is present in edible mushrooms, especially after UV irradiation. Lumisterol is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1.

View Article and Find Full Text PDF

The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR).

View Article and Find Full Text PDF

The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation.

View Article and Find Full Text PDF

The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response.

View Article and Find Full Text PDF

We are commenting recent discoveries on the presence of L-DOPA, dopamine, 5-hydroxytryptophan, tryptamine, serotonin, -acetylserotonin, melatonin, 2-hydroxymelatonin, AFMK and AMK in honey. Serotonin and melatonin, products of the tryptophan metabolism, are widely produced in nature, serving as hormones, neurotransmitters, biological regulators, neurotransmitters and antioxidants, in a context dependent fashion. Dopamine and tryptamine are important neurotransmitters across different species.

View Article and Find Full Text PDF

The skin, including the hypodermis, is the largest body organ and is in constant contact with the environment. Neurogenic inflammation is the result of the activity of nerve endings and mediators (neuropeptides secreted by nerve endings in the development of the inflammatory reaction in the skin), as well as interactions with other cells such as keratinocytes, Langerhans cells, endothelial cells and mast cells. The activation of TRPV-ion channels results in an increase in calcitonin gene-related peptide (CGRP) and substance P, induces the release of other pro-inflammatory mediators and contributes to the maintenance of cutaneous neurogenic inflammation (CNI) in diseases such as psoriasis, atopic dermatitis, prurigo and rosacea.

View Article and Find Full Text PDF

During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes.

View Article and Find Full Text PDF

Vitamin D deficiency is associated with a higher risk of SARS-CoV-2 infection and poor outcomes of the COVID-19 disease. However, a satisfactory mechanism explaining the vitamin D protective effects is missing. Based on the anti-inflammatory and anti-oxidative properties of classical and novel (CYP11A1-derived) vitamin D and lumisterol hydroxymetabolites, we have proposed that they would attenuate the self-amplifying damage in lungs and other organs through mechanisms initiated by interactions with corresponding nuclear receptors.

View Article and Find Full Text PDF

The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress.

View Article and Find Full Text PDF

A symposium entitled "Vitamin D in Prevention and Therapy" was held on May 4-5, 2022, in Homburg, Germany to discuss important new advances in the field, including identification of new vitamin D signaling pathways, of new biologic effects of vitamin D-compounds (e.g., on the microbiome), and convincing proof of the relevance of vitamin D deficiency for the risk and outcome of many chronic diseases, including cancer, cardio-vascular, auto-immune, metabolic, and infectious diseases.

View Article and Find Full Text PDF

Psoriasis is a systemic, chronic, immune-mediated disease that affects approximately 2-3% of the world's population. The etiology and pathophysiology of psoriasis are still unknown, but the activation of the adaptive immune system with the main role of T-cells is key in psoriasis pathogenesis. The modulation of the local neuroendocrine system with the downregulation of pro-inflammatory and the upregulation of anti-inflammatory messengers represent a promising adjuvant treatment in psoriasis therapies.

View Article and Find Full Text PDF
Article Synopsis
  • CYP11A1 and CYP27A1 enzymes convert tachysterol, a byproduct of previtamin D, into biologically active metabolites 20S-hydroxytachysterol (20S(OH)T) and 25-hydroxytachysterol (25(OH)T), which were found in human skin and blood.
  • Both metabolites inhibit the growth of skin cells and promote gene expression related to cell differentiation and antioxidants, similar to the effects of the active form of vitamin D.
  • Additionally, these metabolites interact with various receptors such as the vitamin D receptor (VDR) and the aryl hydrocarbon receptor (AhR), suggesting they play significant roles in cellular processes and providing new
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: