Publications by authors named "Andrzej S Wolniewicz"

The iconic marine raptorial predators Ichthyosauria and Eosauropterygia co-existed in the same ecosystems throughout most of the Mesozoic Era, facing similar evolutionary pressures and environmental perturbations. Both groups seemingly went through a massive macroevolutionary bottleneck across the Triassic-Jurassic (T/J) transition that greatly reduced their morphological diversity, leaving pelagic lineages as the only survivors. However, analyses of marine reptile disparity across the T/J transition have usually employed coarse morphological and temporal data.

View Article and Find Full Text PDF

Unlabelled: Dal Sasso & Pinna, 1996 was originally described on the basis of a single complete fossil specimen excavated near Besano (Italy). However, a recent taxonomic revision and re-examination of the cranial osteology allowed for the assignment of five additional specimens to the taxon. Here, we analyse, describe and discuss the postcranial anatomy of in detail.

View Article and Find Full Text PDF

Sauropterygia was a taxonomically and ecomorphologically diverse clade of Mesozoic marine reptiles spanning the Early Triassic to the Late Cretaceous. Sauropterygians are traditionally divided into two groups representing two markedly different body plans - the short-necked, durophagous Placodontia and the long-necked Eosauropterygia - whereas Saurosphargidae, a small clade of armoured marine reptiles, is generally considered as the sauropterygian sister-group. However, the early evolutionary history of sauropterygians and their phylogenetic relationships with other groups within Diapsida are still incompletely understood.

View Article and Find Full Text PDF

Marine ecosystem recovery after the Permo-Triassic mass extinction (PTME) has been extensively studied in the shallow sea, but little is known about the nature of this process in pelagic ecosystems. Omphalosauridae, an enigmatic clade of open-water durophagous marine reptiles, potentially played an important role in the recovery, but their fragmentary fossils and uncertain phylogenetic position have hindered our understanding of their role in the process. Here we report the large basal ichthyosauriform Sclerocormus from the Early Triassic of China that clearly demonstrates an omphalosaurid affinity, allowing for the synonymy of the recently erected Nasorostra with Omphalosauridae.

View Article and Find Full Text PDF

Dal Sasso & Pinna, 1996 was described on the basis of a single fossil excavated near Besano (Italy) nearly three decades ago. Here, we re-examine its cranial osteology and assign five additional specimens to , four of which were so far undescribed. All of the referred specimens were collected from the Middle Triassic outcrops of the Monte San Giorgio area (Italy/Switzerland) and are housed in various museum collections in Europe.

View Article and Find Full Text PDF

Synapsids are unique in having developed multirooted teeth and complex occlusions. These innovations evolved in at least two lineages of mammaliamorphs (Tritylodontidae and Mammaliaformes). Triassic fossils demonstrate that close to the origins of mammals, mammaliaform precursors were "experimenting" with tooth structure and function, resulting in novel patterns of occlusion.

View Article and Find Full Text PDF