Publications by authors named "Andrzej S Tarnawski"

As the Editor-in-Chief of , every week prior to a new issue's online publication, I perform a careful review of all encompassed articles, including the title, clinical and/or research importance, originality, novelty, and ratings by the peer reviewers. Based on this review, I select the papers of choice and suggest pertinent changes (, in the title) to the Company Editors responsible for publication. This process, while time-consuming, is very important for assuring the quality of publications and highlighting important articles that Readers may revisit.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) infected so far over 250 million people and caused the death of over 5 million worldwide. Aging, diabetes, and cardiovascular diseases, conditions with preexisting impaired endothelial functions predispose to COVID-19. While respiratory epithelium is the main route of virus entry, the endothelial cells (ECs) lining pulmonary blood vessels are also an integral part of lung injury in COVID-19 patients.

View Article and Find Full Text PDF

Tissue injury healing is impaired in aging, and this impairment is caused in part by reduced angiogenesis. Melatonin, a neuroendocrine hormone that regulates sleep and circadian rhythm, is also produced in the gastrointestinal tract. The expression of melatonin receptors MT1 and MT2 in gastric endothelial cells and their roles in aging-related impairment of gastric angiogenesis have not been examined.

View Article and Find Full Text PDF

In this article we review the cellular and molecular mechanisms of gastric ulcer healing. A gastric ulcer (GU) is a deep defect in the gastric wall penetrating through the entire mucosa and the muscularis mucosae. GU healing is a regeneration process that encompasses cell dedifferentiation, proliferation, migration, re-epithelialization, formation of granulation tissue, angiogenesis, vasculogenesis, interactions between various cells and the matrix, and tissue remodeling, all resulting in scar formation.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DFN) and indomethacin (INDO) are extensively used worldwide. Their main side effects are injury of the gastrointestinal tract, including erosions, ulcers, and bleeding. Since gastric epithelial cells (GEPCs) are crucial for mucosal defense and are the major target of injury, we examined the extent to which DFN- and INDO-induced GEPC injury can be reversed by nerve growth factor (NGF), 16,16 dimethyl prostaglandin E (dmPGE), and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), the pharmacological activator of the metabolic sensor AMP kinase (AMPK).

View Article and Find Full Text PDF

Gastric epithelial cells are important components of mucosal protection and targets of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced injury. Diclofenac (DFN) is one of the most widely used NSAIDs; however, even its short-term use can induce gastric erosions and ulcers. Nerve growth factor (NGF) has been reported to act not only on neuronal cells but also on endothelial cells; however, its action on gastric epithelial cells is unknown.

View Article and Find Full Text PDF

In this editorial we comment on the article by Fukushi K et al published in the recent issue of the 2018; 24(34): 3908-3918. We focus specifically on the mechanisms of the anti-thrombotic action of aspirin, gastric mucosal injury and aging-related increased susceptibility of gastric mucosa to injury. Aspirin is widely used not only for the management of acute and chronic pain and arthritis, but also importantly for the primary and secondary prevention of cardiovascular events such as myocardial infarcts and strokes.

View Article and Find Full Text PDF

Background & Aims: Aging gastric mucosa has increased susceptibility to injury and delayed healing owing to impaired angiogenesis, but the mechanisms are not fully known. We examined whether impairment of angiogenesis in aging gastric mucosa is caused by deficiency of nerve growth factor (NGF) in gastric endothelial cells (ECs), and whether NGF therapy could reverse this impairment.

Methods: In gastric mucosal ECs (GECs) isolated from young and aging rats we examined the following: (1) in vitro angiogenesis, (2) NGF expression, and (3) the effect of NGF treatment on angiogenesis, GEC proliferation and migration, and dependence on serum response factor.

View Article and Find Full Text PDF

Background/aims: Endothelial cells (ECs) lining blood vessels are critical for delivery of oxygen and nutrients to all tissues and organs and play a crucial role in the regeneration of blood vessel following tissue injury. ECs are also major targets of injury by a variety of noxious factors [e.g.

View Article and Find Full Text PDF

Angiogenesis is critical for the healing of gastric mucosal injury and is considered to be primarily regulated by vascular endothelial growth factor (VEGF), the fundamental proangiogenic factor. The role of nerve growth factor (NGF) in gastric angiogenesis is unknown. We examined the expression of NGF and its TrkA receptor in endothelial cells (ECs) isolated from gastric mucosa of rats (GMECs), the effect of NGF treatment on in vitro angiogenesis in GMECs, and, the mechanisms underlying NGF's proangiogenic actions.

View Article and Find Full Text PDF

Background And Aim: The gastric enteric nervous system (GENS) is organized into the submucosal plexus and the myenteric plexus that regulate muscle activity and mucosal functions, respectively. A non-invasive, in vivo visualization of GENS was not possible until recent introduction of needle-based confocal laser endomicroscopy (nCLE). Our aim was to determine the feasibility of in vivo visualization of GENS in the porcine stomach using endoscopic ultrasound (EUS) guided nCLE and local injection of molecular neuronal probe NeuroTrace.

View Article and Find Full Text PDF

Background And Aims: The GI tract is innervated by the autonomic enteric nervous system, mainly composed of submucosal Meissner's plexus and myenteric Auerbach's plexus, which is essential for motility, blood flow regulation, and secretory functions. In vivo visualization of the esophageal enteric nervous system (EENS) during endoscopy has not been possible without invasive mucosal resection. This study aimed to visualize the EENS without mucosal resection, in vivo by using the novel probe, needle-based confocal laser-induced endomicroscopy (nCLE) with a fluorescence neuronal probe, NeuroTrace, under EUS guidance and to evaluate the feasibility of ex vivo imaging of the neuronal network in submucosal biopsy samples acquired at endoscopy.

View Article and Find Full Text PDF

Background And Aim: Endoscopic assessment of mucosal healing in ulcerative colitis (UC) is increasingly accepted as a measure of disease activity, therapeutic goal, and the key prognostic indicator. While regular endoscopy evaluates appearance of the mucosal surface, confocal laser endomicroscopy (CLE) enables in vivo visualization of subepithelial mucosa at 1000× magnification during ongoing endoscopy. Our aims were to determine using CLE whether endoscopically normal appearing colonic mucosa in patients with UC in remission (UC-IR) has fully regenerated mucosal structures, resolved inflammation, and to identify the mechanisms.

View Article and Find Full Text PDF

Angiogenesis (also referred to as neovascularization-formation of new blood vessels from existing vessels) is a fundamental process essential for healing of tissue injury and ulcers because regeneration of blood microvessels is a critical requirement for oxygen and nutrient delivery to the healing site. This review article updates the current views on angiogenesis in gastric mucosa following injury and during ulcer healing, its sequential events, the underlying mechanisms, and the impairment of angiogenesis in aging gastric mucosa. We focus on the time sequence and ultrastructural features of angiogenesis, hypoxia as a trigger, role of vascular endothelial growth factor signaling (VEGF), serum response factor, Cox2 and prostaglandins, nitric oxide, and importin.

View Article and Find Full Text PDF

Clinical studies indicate that prostaglandins of E class (PGEs) may promote healing of tissue injury e.g., gastroduodenal and dermal ulcers.

View Article and Find Full Text PDF

This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-"aging gastropathy"-has prominent structural and functional abnormalities vs young gastric mucosa. Some of these abnormalities include a partial atrophy of gastric glands, impaired mucosal defense (reduced bicarbonate and prostaglandin generation, decreased sensory innervation), increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), impaired healing of injury and reduced therapeutic efficacy of ulcer-healing drugs.

View Article and Find Full Text PDF

Recent in vivo studies demonstrated that aging gastric mucosa has impaired angiogenesis and reduced expression of vascular endothelial growth factor (VEGF). Angiogenesis is triggered by hypoxia and VEGF gene activation, and the latter requires transport of transcription factor(s) into endothelial cell nuclei. We focused on gastric mucosal endothelial cells (GMEC), which are key targets and effectors of gastric angiogenesis, and determined whether and to what extent importin-α, a nuclear transport protein, regulates VEGF gene activation and gastric angiogenesis and the possible role of importin-α in aging gastropathy.

View Article and Find Full Text PDF

Unlabelled: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 and VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy.

View Article and Find Full Text PDF

Gastric mucosa of aging individuals exhibits increased susceptibility to injury and delayed healing. Our previous studies in young rats showed that healing of mucosal injury depends on and is critically dependent on VEGF and angiogenesis. Since angiogenesis in aging gastric mucosa has not been examined before, in this study we examined the extent to which angiogenesis is impaired in gastric mucosa of aging vs.

View Article and Find Full Text PDF

In this article we review the role of vascular endothelial growth factor (VEGF) in colon cancer growth and the underlying mechanisms. Angiogenesis, the growth of new capillary blood vessels in the body, is critical for tissue injury healing and cancer growth. In 1971, Judah Folkman proposed the concept that tumor growth beyond 2 mm is critically dependent on angiogenesis.

View Article and Find Full Text PDF

Basic fibroblast growth factor (bFGF or FGF-2) is a pleiotropic growth factor that promotes growth of mesenchymal and epithelial cells, stimulates angiogenesis and neuroprotection. Moreover, exogenous bFGF by stimulating angiogenesis promotes healing of gastroduodenal ulcers and cardiac and brain injury. All these actions were demonstrated in regard to 18kDa bFGF isoform that is secreted by cells via an ER/Golgi-independent pathway and activates FGF receptors.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD): ulcerative colitis (UC) and Crohn disease (CD) are characterized by recurrent inflammation and ulceration of intestinal and/or colonic mucosa and an inappropriate and delayed healing. Current therapies with, e.g.

View Article and Find Full Text PDF

Aging is associated with impaired angiogenesis (new blood vessels formation from the endothelial cells of pre-existing vessels) in a variety of tissues. The precise mechanisms of aging-related impairment of angiogenesis are not known. PTEN is a dual-specificity phosphatase that antagonizes in some cells the PI3K/Akt signaling pathway, important for cell survival, function and angiogenesis.

View Article and Find Full Text PDF

Background: Helicobacter pylori (H. pylori) is associated with chronic gastritis and gastric carcinogenesis. The effects of nonsteroidal anti-inflammatory drugs (NSAIDs), which exert chemopreventive effects on several cancers, on H.

View Article and Find Full Text PDF