Publications by authors named "Andrzej Romanski"

This work presents the possibilities of producing a substitute for a commercial matrix material for sintered metal-diamond tools which is characterized by increased tribological properties required in machining natural stones and concrete. In this study, the improvement in wear behavior of sintered pre-alloyed matrix caused by a thermal treatment was investigated. Several mixtures made of commercially available powders were homogenized by ball milling and consolidated at 900 °C using the spark plasma sintering (SPS) method.

View Article and Find Full Text PDF

This work presents the analysis of mechanisms controlling the deformation strengthening of the surface during abrasion and their impact on structural changes and mechanical properties of Fe-Mn-Cu-Sn-C matrix material, which was prepared by means of powder metallurgy (PM). The powder mixture was ball-milled for 8 h and densified to <1% porosity using hot pressing at 900 °C and 35 MPa. Phases and structural transformations taking place in austenite during plastic deformation were identified.

View Article and Find Full Text PDF

The conventional copper infiltrated high speed steel (HSS) valve seats used in gasoline engines are not suitable for CNG combustion because the exhaust gas temperature is at least 80 °C higher, which drastically shortens the service life of the engine valves. Therefore, a proprietary high-alloy HSS-base material was designed to combat hot corrosion and mechanical wear of valve seat faces in CNG fuelled engines. A batch of -100 mesh water atomized HSS powder was commissioned.

View Article and Find Full Text PDF

The work presents the possibility of fabricating materials for use as a matrix in sintered metallic-diamond tools with increased mechanical properties and abrasion wear resistance. In this study, the effect of micro-sized SiC, AlO, and ZrO additives on the wear behaviour of dispersion-strengthened metal-matrix composites was investigated. The development of metal-matrix composites (based on Fe-Mn-Cu-Sn-C) reinforced with micro-sized particles is a new approach to the substitution of critical raw materials commonly used for the matrix in sintered diamond-impregnated tools used for the machining of abrasive stone and concrete.

View Article and Find Full Text PDF