Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.
View Article and Find Full Text PDFAn extensive series of tetranuclear CuII2LnIII2 complexes [CuIILLnIII(hfac)2]2 (with LnIII being all lanthanide(III) ions except for the radioactive PmIII) has been prepared in order to investigate the nature of the CuII-LnIII magnetic interactions and to try to answer the following question: What makes the CuII2TbIII2 and CuII2DyIII2 complexes single molecule magnets while the other complexes are not? All the complexes within this series possess a similar cyclic tetranuclear structure, in which the CuII and LnIII ions are arrayed alternately via bridges of ligand complex (CuIIL). Regular SQUID magnetometry measurements have been performed on the series. The temperature-dependent magnetic susceptibilities from 2 to 300 K and the field-dependent magnetizations from 0 to 5 T at 2 K have been measured for the CuII2LnIII2 and NiII2LnIII2 complexes, with the NiII2LnIII2 complex containing diamagnetic NiII ions being used as a reference for the evaluation of the CuII-LnIII magnetic interactions.
View Article and Find Full Text PDFWe report now the first single molecule magnet (SMM) consisting of d-f elements. The present study demonstrates that the synthesis of the d-f polynuclear molecule is a very promising approach to SMMs. (1) The d-f polynuclear molecule can be easily synthesized by the assembly reaction of the d-component and the f-component, (2) the high-spin ground state can be generated by a smaller number of metal ions than the d complex, and (3) the molecular magnetic anisotropy is easily derived from the f-component.
View Article and Find Full Text PDF