Publications by authors named "Andrzej Kornas"

The aim of this study was to test the hypothesis that both the winter triticale genotype and salinity treatment influence the photosynthesis efficiency and content of metabolites and proteins, including antioxidant enzymes, under field conditions, as well as that these parameters are correlated with yielding capacity. The research material involved four genotypes differing in their tolerance to stress in previous tests. Chlorophyll fluorescence parameters and antioxidant activity were assessed in the seedlings.

View Article and Find Full Text PDF

We analyzed the effects of foliar spraying with amino acids, chitosan (CHS) and nanocomposites (NCs) of chitosan with the amino acids proline, L-cysteine and glycine betaine (CHS-Pro NCs; CHS-Cys NCs, CHS-GB NCs, respectively) on the changes in the physiological and biochemical parameters of iceberg lettuce grown at the control temperature (20 °C) and under chilling conditions (4 °C). The physicochemical parameters of the phospholipid monolayers (PLs) extracted from plants showed the effects of the treatments on the properties of the monolayers, namely, the packing density and flexibility. We observed increased accumulation of proline at 4 °C, and differences in the concentrations of sugars in most of the analyzed variants were a consequence of the lowered temperature and/or the use of organic compounds.

View Article and Find Full Text PDF

High temperatures associated with climate change may increase the severity of plant diseases. This study investigated the effect of heat shock treatment on host and non-host barley powdery mildew interactions using brassinosteroid (BR) mutants of barley. Brassinosteroids are plant steroid hormones, but so far little is known about their role in plant-fungal interactions.

View Article and Find Full Text PDF

This study aimed at characterizing some adaptive changes in L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance.

View Article and Find Full Text PDF

Progressive climate changes cause disturbance of water relations in tropical rainforests, where epiphytic ferns are an important element of biodiversity. In these plants, the efficiency of photosynthesis is closely related to the efficiency of water transport. In addition, due to the lack of contact with the soil, epiphytes are extremely susceptible to water-deficit stress.

View Article and Find Full Text PDF

Background: Most nanoparticles (NPs) have a significant impact on the structure and function of the plant photosynthetic apparatus. However, their spectrum of action varies significantly, from beneficial stimulation to toxicity, depending on the type of NPs, the concentration used and plant genotypic diversity. Photosynthetic performance can be assessed through chlorophyll a fluorescence (ChlF) measurements.

View Article and Find Full Text PDF

The effect of one of anthropogenic pollutants, i.e., 4,4'-isopropylidenediphenol, called 2,2-bis (4-hydroxyphenyl) propane (BPA), at 30 and 120 mg L concentrations in the darkness (DK) or dark/light (DK/LT) on growth and selected elements of metabolism of seedlings and leaf discs of Vicia faba ssp.

View Article and Find Full Text PDF

The reconfiguration of the primary metabolism is essential in plant-pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with pv () with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and -inositol.

View Article and Find Full Text PDF

Cell death (CD) may be induced by endogenous or exogenous factors and contributes to all the steps of plant development. This paper presents results related to the mechanism of CD regulation induced by kinetin (Kin) in the root cortex of Vicia faba ssp. minor.

View Article and Find Full Text PDF

The common ice plant ( L.) is a facultative crassulacean acid metabolism (CAM) plant, and its ability to recover from stress-induced CAM has been confirmed. We analysed the photosynthetic metabolism of this plant during the 72-h response period following salinity stress removal from three perspectives.

View Article and Find Full Text PDF

The stromata of fungi are structures covering part of the stem of grasses. Under the fungal layer, still green tissues of the plant survive, although the development of the new leaves is inhibited. Stromata are the places where conidia and ascospores develop.

View Article and Find Full Text PDF

(Chaix) DC., green alder, is a fast-growing shrub that grows expansively in the European mountainside. In Poland, naturally occurs only in the Bieszczady Mountains (south-eastern part of the country), above the upper forest border.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of infection on cucumber leaves, focusing on gas exchange, photosynthesis, and the plant's antioxidant responses.
  • Infected leaves showed decreased photosynthesis and increased stress indicators, while systemic, uninfected leaves maintained better photosynthesis but still displayed some defensive responses.
  • The research suggests that changes in antioxidant levels and redox balance in systemic leaves may help the plant cope with stress and maintain growth during infection.
View Article and Find Full Text PDF

The present work focused on the characterization of some physiological mechanisms activated upon powdery mildew inoculation of the susceptible barley cultivar Ingrid and its near-isogenic lines (NILs) carrying various resistant genes (, and ). After inoculation with f. sp.

View Article and Find Full Text PDF

Many areas exhibiting increased concentrations of soluble salts are simultaneously polluted with heavy metals (HM), and halophytes with extended tolerance to heavy metal toxicity seem to represent a promising tool for their phytoremediation. In this study, the response of the soil-grown C-CAM (Crassulacean acid metabolism) intermediate halophyte Mesembryanthemum crystallinum (common ice plant) to increased concentrations of Cd (0.01-1 mM) was investigated.

View Article and Find Full Text PDF

Background: Chlorophyll fluorescence analysis is one of the non-invasive techniques widely used to detect and quantify the stress-induced changes in the photosynthetic apparatus. Quantitative information is obtained as a series of images and the specific fluorescence parameters are evaluated inside the regions of interest outlined separately on each leaf image. As the performance of photosynthesis is highly heterogeneous over a leaf surface, the areas of interest selected for generating numeric data are crucial for a reliable analysis.

View Article and Find Full Text PDF

It is well known that monitoring of radioactivity released from nuclear medicine departments is necessary to ensure the radiological safety of patients and personnel. Unfortunately, equipment for air sampling is often expensive, loud and is not suitable to use in hospitals. Our goal was to find cheap and simple system for passive monitoring of I activity concentration in the air of nuclear medicine departments.

View Article and Find Full Text PDF

In Mesembryanthemum crystallinum, crassulacean acid metabolism (CAM) is seemingly reversible, but unequivocal evidence for functional CAM withdrawal has yet to be shown. In this study, we confirmed the rapid downregulation of PEPC1 expression just 1 h after the removal of NaCl from the plant growth media. At the same time, the Δ malate values in desalted plants rapidly (1 d) re-established to values typical for C plants.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate whether the application of selenium (Se) ions directly to the leaf surface can protect plants against infection by the fungal toxin zearalenone (ZEA). The experiments were performed for the most common and agronomically important crops such as wheat, oat, and barley (both tolerant and sensitive varieties) because mycotoxin accumulation in plants is the cause of many diseases in animals and people.

Results: ZEA at a concentration of 10 µmol L either alone or in combination with Se (5 µmol L Na SeO ) was applied to the second leaf of seedlings.

View Article and Find Full Text PDF

The chlorophyll and carotenoid content, and the spectra of low-temperature fluorescence of the leaves, chloroplasts and isolated pigment-protein complexes in the perennial herbaceous wintergreen plant Ajuga reptans L. (bugle) in different seasons of the year were studied. During winter, these plants downregulate photosynthesis and the PSA is reorganised, including the loss of chlorophyll, possible reductions in the number of functional reaction centres of PSII, and changes in aggregation of the thylakoid protein complexes.

View Article and Find Full Text PDF

Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations.

View Article and Find Full Text PDF

Photosynthetic processes in the leaf lamina and midribs of Plantago media were investigated using plants grown in high light (HL) or low light (LL) conditions. The fluorescence parameters, which indicate photochemical/photosynthetic activity, were different in HL and LL grown plants, but no major differences between lamina and midribs were found. An OJIP test (chlorophyll a fluorescence transient induction) of LL grown plants, indicative of the chloroplast electron transport chain, also showed both tissues to be similar.

View Article and Find Full Text PDF

Background And Aims: Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis.

View Article and Find Full Text PDF

According to microscopic observations, germinating hyphae of Botrytis cinerea, though easily penetrating Mesembryanthemum crystallinum mesophyll tissue, are limited in growth in mid-ribs and only occasionally reach vascular bundles. In mid-ribs of C3 and CAM leaves, we found significantly lower rbcL (large RubisCO subunit) abundance. Moreover, in CAM leaves, minute transcript contents for pepc1 (phosphoenolpyruvate carboxylase) and nadpme1 (malic enzyme) genes found in the mid-ribs suggest that they perform β-carboxylation at a low rate.

View Article and Find Full Text PDF

The role of PQ (plastoquinione) redox state in establishment of response to pathogen infection (Botrytis cinerea) was tested along the regulation of main antioxidative enzymes (superoxide dismutase - SOD, catalase - CAT) and photochemistry of PSII (photosystem II) in Mesembryanthemum crystallinum plants performing C3 and CAM (Crassulacean acid metabolism) carbon metabolism. The redox state of PQ was modified by two inhibitors of photosynthetic electron transport resulting in a more oxidised (3-(3,4-dichlorophenyl)-1,1-dimethylurea; DCMU) or reduced (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DBMIB) PQ redox state simulating darkness and high light conditions, respectively. Irrespective of the type of treatment (mock inoculation or pathogen inoculation) SOD activity depended on the PQ pool.

View Article and Find Full Text PDF