Publications by authors named "Andrzej J Przekwas"

Military personnel involved in weapon training are subjected to repeated low-level blasts. The prevailing method of estimating blast loads involves wearable blast gauges. However, using wearable sensor data, blast loads to the head or other organs cannot be accurately estimated without knowledge of the service member's body posture.

View Article and Find Full Text PDF

The administration of therapeutic drugs through dermal routes, such as creams and ointments, has emerged as an increasingly popular alternative to traditional delivery methods, such as tablets and injections. In the context of drug development, it is crucial to identify the optimal doses and delivery routes that ensure successful outcomes. Physiologically based pharmacokinetic (PBPK) models have been proposed to simulate drug delivery and optimize drug formulations, but the calibration of these models is challenging due to the multitude of variables involved and limited experimental data.

View Article and Find Full Text PDF

The delivery of therapeutic drugs through the skin is a promising alternative to oral or parenteral delivery routes because dermal drug delivery systems (DSs) offer unique advantages, such as controlled drug release over sustained periods and a significant reduction in first-pass effects, thus reducing the required dosing frequency and the level of patient noncompliance. Furthermore, DSs find applications in multiple therapeutic areas, including drug repurposing. This article presents an integrated biophysical model of dermal absorption for simulating the permeation and absorption of compounds delivered transdermally.

View Article and Find Full Text PDF

Subject-specific computer models (male and female) of the human head were used to investigate the possible axonal deformation resulting from the primary phase blast-induced skull flexures. The corresponding axonal tractography was explicitly incorporated into these finite element models using a recently developed technique based on the embedded finite element method. These models were subjected to extensive verification against experimental studies which examined their pressure and displacement response under a wide range of loading conditions.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a 'magic bullet' for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed.

View Article and Find Full Text PDF