Publications by authors named "Andrzej Fedorowicz"

This work presents a semi-quantitative spectroscopic approach, including FTIR-ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach provided the description of the RBC alterations at the molecular level in a model of accelerated aging induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging.

View Article and Find Full Text PDF

Diabetes increases the risk of pulmonary hypertension and is associated with alterations in pulmonary vascular function. Still, it is not clear whether alterations in the phenotype of pulmonary endothelium induced by diabetes are distinct, as compared to peripheral endothelium. In the present work, we characterized differences between diabetic complications in the lung and aorta in db/db mice with advanced diabetes.

View Article and Find Full Text PDF

The combination of FT-IR and Raman spectroscopies allowed the biochemical profiling of lungs in the early stage of pulmonary metastasis in the murine model of breast cancer. Histological staining was used as a reference. Raman spectroscopy was especially useful in the detection and semi-quantitative analysis of the vitamin A content in lung lipofibroblasts, whereas the IR technique provided semi-quantitative information on the contents of nucleic acids, carbohydrates including glycogen, and lipids as well as changes in the secondary structures of tissue proteins.

View Article and Find Full Text PDF

Angiotensin-converting enzyme inhibitors (ACE-I) display vasoprotective activity and represent the cornerstone in the treatment of cardiovascular diseases. In this study, we tested whether Fourier transform infrared (FTIR)-based analysis of blood plasma is sensitive to detect vasoprotective effects of treatment with perindopril including reversal of endothelial dysfunction in diabetes. For this purpose, plasma samples were collected from untreated db/db mice, db/db mice treated with 2 or 10 mg/kg perindopril and db+ mice.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is associated with inflammatory response but it is unknown whether it is associated with alterations in NNMT activity and MNA plasma concentration. Here we examined changes in NNMT-MNA pathway in PAH in rats and humans.

Methods: PAH in rats was induced by a single subcutaneous injection of MCT (60 mg/kg).

View Article and Find Full Text PDF

The main goal of this study was to find specific plasma spectral markers associated with pulmonary arterial hypertension (PAH) induced by monocrotaline injection in rats. FTIR was used to monitor biochemical changes in plasma caused by PAH as compared with the systemic hypertension induced by partial ligation on the left artery and with the control group. Both pathologies, systemic and pulmonary hypertension, induced a unique response in the biochemical content of plasma, mainly related to the composition and secondary structure of plasma proteins.

View Article and Find Full Text PDF

In this work, we describe a methodology to visualize the biochemical markers of atherosclerotic plaque in cross sections of brachiocephalic arteries (BCA) taken from ApoE/LDLR(-/-) mice. The approach of the visualization of the same area of atherosclerotic plaque with the use of Raman, IR and AFM imaging enables the parallel characterisation of various features of atherosclerotic plaques. This support to the histochemical staining is utilized mainly in studies on mice models of atherosclerotic plaques, where micro and sub-micro resolutions are required.

View Article and Find Full Text PDF

It has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.

View Article and Find Full Text PDF

In recent years many methods for ex vivo tissue analysis or diagnosis of diseases have been applied, including infrared absorption spectroscopy. Fourier-transform infrared (FT-IR) absorption microspectroscopy allows the simultaneous monitoring of the content of various chemical compounds in tissues with both high selectivity and resolution. Imaging of tissue samples in very short time can be performed using a spectrometer equipped with a Focal Plane Array (FPA) detector.

View Article and Find Full Text PDF

Raman imaging was used to illustrate heterogeneity of a single endothelial cell and the vascular wall sample. The spectral analysis allowed for exploring the complexity of the studied systems in three dimensions and defining the size, volume, shape and biochemical composition of cellular organelles. The ability to construct the 3D maps by a method that does not disrupt the spatial integrity of the cell provided a unique insight into biochemical architecture and cellular processes of endothelium and vascular wall.

View Article and Find Full Text PDF

Objective: We compared the antithrombotic effects in vivo of 2 chemically different carbon monoxide-releasing molecules (CORM-A1 and CORM-3) on arterial and venous thrombus formation and on hemostatic parameters such as platelet activation, coagulation, and fibrinolysis. The hypotensive response to CORMs and their effects on whole blood gas analysis and blood cell count were also examined.

Methods And Results: CORM-A1 (10-30 µmol/kg, i.

View Article and Find Full Text PDF

Carbon monoxide (CO) and CO-releasing molecules (CO-RMs) inhibit platelet aggregation in vitro. Herein, we compare the anti-platelet action of CORM-3, which releases CO rapidly (t (½) 1 min), and CORM-A1, which slowly releases CO (t(½) = 21 min). The anti-platelet effects of NO donors with various kinetics of NO release were studied for comparison.

View Article and Find Full Text PDF

Taking advantage of the unique model of slowly developing dilated cardiomyopathy in mice with cardiomyocyte-specific transgenic overexpression of activated Gαq protein (Tgαq*44 mice) we analyzed the contribution of the cardiomyocyte malfunction, fibrosis and cytoskeleton remodeling to the development of heart failure in this model. Left ventricular (LV) in vivo function, myocardial fibrosis, cytoskeletal proteins expression and distribution, Ca(2+) handling and contractile function of isolated cardiomyocytes were evaluated at the stages of the early, compensated, and late, decompensated heart failure in 4-, 12- and 14-month-old Tgαq*44 mice, respectively, and compared to age-matched wild-type FVB mice. In the 4-month-old Tgαq*44 mice significant myocardial fibrosis, moderate myocyte hypertrophy and increased expression of regularly arranged and homogenously distributed desmin accompanied by increased phosphorylation of desmin chaperone protein, αB-crystallin, were found.

View Article and Find Full Text PDF

A sensitive and specific liquid chromatography tandem mass spectrometry method with electrospray ionization for the determination of endothelin-1 in rat plasma and lung effluents has been developed and validated. Detection was achieved by an Applied Biosystems MDS Sciex API 2000 triple quadrupole mass spectrometer coupled to an Agilent 1100 LC system. The limit of detection and the limit of the quantification of ET-1 in matrix buffer was estimated at 40 pM and 1 nM, respectively.

View Article and Find Full Text PDF

Various mechanisms have been postulated to be involved in angiotensin-(1-7)-induced endothelium-dependent vasodilation. Here, we characterized the vasodilator action of angiotensin-(1-7) in the isolated guinea pig heart. Angiotensin-(1-7) (1-10 nmol, bolus) induced dose-dependent increase in the coronary flow.

View Article and Find Full Text PDF

The dysfunction of lung endothelium is crucial in the development of pulmonary hypertension. Dysfunction of endothelial synthesis of prostacyclin (PGI2) and nitric oxide (NO) and increased activity of endothelin 1 (ET-1) are connected to the progress of the disease. In this review the authors describe three major mediators of pulmonary endothelium: NO, PGI2 and ET-1.

View Article and Find Full Text PDF