Publications by authors named "Andrzej Brzozowski"

Article Synopsis
  • - The insulin signaling axis (IIS) is crucial for regulating important life processes like metabolism, growth, and aging in Metazoa, with humans and Drosophila (fruit flies) utilizing similar, yet distinct, components for this regulation.
  • - Researchers have determined the structure of the Drosophila insulin receptor (dmIR) when bound to DILP5, revealing a 'T' shaped conformation that shows significant similarities to human insulin receptors but with unique features of its own.
  • - This study not only supports the idea that the IIS axis is evolutionarily conserved across species but also enhances our understanding of Drosophila as a valuable model organism for studying insulin-related mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • IGF2 is a protein that helps with growth and development in babies and affects adults too.
  • There are different forms of IGF2 that can be made from a precursor called pro-IGF2(156), and when it doesn't get processed right, it can lead to problems in the body.
  • Some of these forms, like big-IGF2(104) and pro-IGF2(156), may play a role in certain diseases because they act differently and can be found in higher amounts in sick people.
View Article and Find Full Text PDF

Insulin is stored inside the pancreatic β-cell insulin secretory granules. studies have led to an assumption that high insulin and Zn concentrations inside the pancreatic β-cell insulin secretory granules should promote insulin crystalline state in the form of Zn-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic β-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals.

View Article and Find Full Text PDF

Insulin is produced and stored inside the pancreatic β-cell secretory granules, where it is assumed to form Zn-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content.

View Article and Find Full Text PDF

Structural details of changes accompanying interaction between insulin-related hormones and their binding partners are often enigmatic. Here, cross-linking/mass spectrometry could complement structural techniques and reveal details of these protein-protein interfaces. We used such approach to clarify missing structural description of the interface in human insulin-like growth factor (IGF-1): imaginal morphogenesis protein-late 2 protein (Imp-L2) complex which we studied previously by X-ray crystallography.

View Article and Find Full Text PDF

The insulin/insulin-like growth factor signalling axis is an evolutionary ancient and highly conserved hormonal system involved in the regulation of metabolism, growth and lifespan in animals. Human insulin is stored in the pancreas, while insulin-like growth factor-1 (IGF-1) is maintained in blood in complexes with IGF-binding proteins (IGFBP1-6). Insect insulin-like polypeptide binding proteins (IBPs) have been considered as IGFBP-like structural and functional homologues.

View Article and Find Full Text PDF

The oligomeric state of the storage form of human insulin in the pancreas, which may be affected by several endogenous components of β-cell storage granules such as arginine, is not known. Here, the effect of arginine on insulin oligomerization is investigated independently by protein crystallography, molecular dynamics simulations, and capillary electrophoresis. The combined results point to a strong effect of ionic strength on insulin assembly.

View Article and Find Full Text PDF

Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen, and the leading cause of infectious blindness worldwide. We have recently shown that immunization with the highly conserved antigenic passenger domain of recombinant Ct polymorphic membrane protein D (rPmpD) is protective in the mouse model of Ct genital tract infection, and previously, that ocular anti-rPmpD antibodies are elicited following vaccination. However, the mechanisms governing the assembly and structure-function relationship of PmpD are unknown.

View Article and Find Full Text PDF

Insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively) are protein hormones involved not only in normal growth and development but also in life span regulation and cancer. They exert their functions mainly through the IGF-1R or by binding to isoform A of the insulin receptor (IR-A). The development of IGF-1 and IGF-2 antagonists is of great clinical interest.

View Article and Find Full Text PDF

Human insulin-like growth factor 1 (IGF-1) is a 70 amino acid protein hormone, with key impact on growth, development, and lifespan. The physiological and clinical importance of IGF-1 prompted challenging chemical and biological trials toward the development of its analogs as molecular tools for the IGF-1 receptor (IGF1-R) studies and as new therapeutics. Here, we report a new method for the total chemical synthesis of IGF-1 analogs, which entails the solid-phase synthesis of two IGF-1 precursor chains that is followed by the Cu-catalyzed azide-alkyne cycloaddition ligation and by biomimetic formation of a native pattern of disulfides.

View Article and Find Full Text PDF
Article Synopsis
  • Human insulin is crucial for regulating metabolism and growth, and its dysfunction is linked to diabetes, cancers, and neurodegeneration.
  • The study explores how neurotransmitters like serotonin and dopamine interact with insulin hexamers in pancreatic storage, suggesting that serotonin stabilizes these structures in a specific conformation, known as TR.
  • Findings indicate that the TR oligomer form of insulin may be significant for its storage in the pancreas and could impact future insulin formulations used in clinical settings.
View Article and Find Full Text PDF

The development of a chlamydial vaccine that elicits protective mucosal immunity is of paramount importance in combatting the global spread of sexually transmitted Chlamydia trachomatis (Ct) infections. While the identification and prioritization of chlamydial antigens is a crucial prerequisite for efficacious vaccine design, it is likely that novel adjuvant development and selection will also play a pivotal role in the translational potential of preclinical Ct vaccines. Although the molecular nature of the immuno-modulatory component is of primary importance, adjuvant formulation and delivery systems may also govern vaccine efficacy and potency.

View Article and Find Full Text PDF

Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones.

View Article and Find Full Text PDF

Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes.

View Article and Find Full Text PDF

Heparan sulfate (HS) is a glycosaminoglycan that forms a key component of the extracellular matrix (ECM). Breakdown of HS is carried out by heparanase (HPSE), an endo-β-glucuronidase of the glycoside hydrolase 79 (GH79) family. Overexpression of HPSE results in breakdown of extracellular HS and release of stored growth factors and hence is strongly linked to cancer metastasis.

View Article and Find Full Text PDF

Background: Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C.

View Article and Find Full Text PDF

The insulin gene mutation c.137G>A (R46Q), which changes an arginine at the B22 position of the mature hormone to glutamine, causes the monogenic diabetes variant maturity-onset diabetes of the young (MODY). In MODY patients, this mutation is heterozygous, and both mutant and wild-type (WT) human insulin are produced simultaneously.

View Article and Find Full Text PDF

The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone.

View Article and Find Full Text PDF

The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations.

View Article and Find Full Text PDF

The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin-insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states.

View Article and Find Full Text PDF

Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear.

View Article and Find Full Text PDF

Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer's disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin-insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein.

View Article and Find Full Text PDF

The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking.

View Article and Find Full Text PDF

Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states.

View Article and Find Full Text PDF