Promyelocytic leukemia protein (PML) modulates diverse cell functions that contribute to both tumor suppressor and pro-oncogenic effects, depending on the cellular context. We show here that PML knockdown (KD) in MDA-MB-231, but not MCF7, breast cancer cells, prolonged stem-cell-like survival, and increased cell proliferation and migration, which is in line with gene-enrichment results from their RNA sequencing analysis. Of note, increased migration was accompanied by higher levels of the epithelial-mesenchymal transition (EMT) regulator Twist-related protein 2 (TWIST2).
View Article and Find Full Text PDFProtein-based carriers are promising vehicles for the intracellular delivery of therapeutics. In this study, we designed and studied adenovirus protein fiber constructs with potential applications as carriers for the delivery of protein and nanoparticle cargoes. We used as a basic structural framework the fibrous shaft segment of the adenovirus fiber protein comprising of residues 61-392, connected to the fibritin foldon trimerization motif at the C-terminal end.
View Article and Find Full Text PDFThe promyelocytic leukemia protein (PML) is the core organizer of cognate nuclear bodies (PML-NBs). Through physical interaction or modification of diverse protein clients, PML-NBs regulate a multitude of - often antithetical- biological processes such as antiviral and stress response, inhibition of cell proliferation and autophagy, and promotion of apoptosis or senescence. Although PML was originally recognized as a tumor-suppressive factor, more recent studies have revealed a "double-faced" agent role for PML.
View Article and Find Full Text PDFCell-penetrating peptides are used extensively to deliver molecules into cells due to their unique characteristics such as rapid internalization, charge, and non-cytotoxicity. Amyloid fibril biomaterials were reported as gene transfer or retroviral infection enhancers; no cell internalization of the peptides themselves is reported so far. In this study, we focus on two rationally and computationally designed peptides comprised of β-sheet cores derived from naturally occurring protein sequences and designed positively charged and aromatic residues exposed at key residue positions.
View Article and Find Full Text PDFThe multitasking promyelocytic leukemia (PML) protein was originally recognized as a tumor-suppressive factor, but more recent evidence has implicated PML in tumor cell prosurvival actions and poor patient prognosis in specific cancer settings. Here, we report that inducible PMLIV expression inhibits cell proliferation as well as self-renewal and impairs cell cycle progression of breast cancer cell lines in a reversible manner. Transcriptomic profiling identified a large number of PML-deregulated genes associated with various cell processes.
View Article and Find Full Text PDFGroucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties.
View Article and Find Full Text PDFPromyelocytic leukemia protein (PML), the main constituent of PML nuclear bodies, regulates various physiological processes in different cell types. However, little is known about its functions in embryonic stem cells (ESC). Here, we report that PML contributes to ESC self-renewal maintenance by controlling cell-cycle progression and sustaining the expression of crucial pluripotency factors.
View Article and Find Full Text PDFOver the past years, microRNAs (miRNAs) have emerged as crucial factors that regulate self-renewal and differentiation of embryonic stem cells (ESCs). Although much is known about their role in maintaining ESC pluripotency, the mechanisms by which they affect cell fate decisions remain poorly understood. By performing deep sequencing to profile miRNA expression in mouse ESCs (mESCs) and differentiated embryoid bodies (EBs), we identified four differentially expressed miRNAs.
View Article and Find Full Text PDFPluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology.
View Article and Find Full Text PDFHistone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages.
View Article and Find Full Text PDFSall1 is a multi-zinc finger transcription factor that regulates kidney organogenesis. It is considered to be a transcriptional repressor, preferentially localized on heterochromatin. Mutations or deletions of the human SALL1 gene are associated with the Townes-Brocks syndrome.
View Article and Find Full Text PDFEmbryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools.
View Article and Find Full Text PDFBackground: Epigenetic mechanisms regulate gene expression patterns affecting cell function and differentiation. In this report, we examine the role of histone acetylation in gene expression regulation in mouse embryonic stem cells employing transcriptomic and epigenetic analysis.
Results: Embryonic stem cells treated with the histone deacetylase inhibitor Trichostatin A (TSA), undergo morphological and gene expression changes indicative of differentiation.
The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocompatibility Class II (MHC II) DRA gene in a way independent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that correlate with DRA transcription after TSA treatment. We found that a dramatic increase in promoter linked histone acetylation is followed by an increase in Histone H3 lysine 4 methylation and a decrease of lysine 9 methylation.
View Article and Find Full Text PDFTightly regulated expression of major histocompatibility complex (MHC) class II genes is critical for the immune system. A conserved regulatory module consisting of four cis-acting elements, the W, X, X2 and Y boxes, controls transcription of MHC class II genes. The X, X2, and Y boxes are bound, respectively, by RFX, CREB, and NF-Y to form a MHC class II-specific enhanceosome complex.
View Article and Find Full Text PDFWe describe the temporal order of recruitment of transcription factors, cofactors and basal transcriptional components and the consequent biochemical events that lead to activation of the major histocompatibility class II (MHCII) DRA gene transcription by IFN-gamma. We found that the gene is 'poised' for activation since both the activators and a fraction of the basal transcriptional machinery are pre-assembled at the enhancer and promoter prior to IFN-gamma treatment. The class II transactivator is synthesized following IFN-gamma treatment and it is recruited to the enhanceosome leading to the subsequent recruitment of the CBP and GCN5 coactivators.
View Article and Find Full Text PDFWe show here that steroid receptor coactivator 1 (SRC-1) is a coactivator of MHC class II genes that stimulates their interferon gamma (IFNgamma) and class II transactivator (CIITA)-mediated expression. SRC-1 interacts physically with the N-terminal activation domain of CIITA through two regions: one central [extending from amino acids (aa) 360-839] that contains the nuclear receptors binding region and one C-terminal (aa 1138-1441) that contains the activation domain 2. Using chromatin immunoprecipitation assays we show that SRC-1 recruitment on the class II promoter is enhanced upon IFNgamma stimulation.
View Article and Find Full Text PDFTo broaden the applicability of adoptive cellular immunotherapy against HER-2/neu overexpressing human cancers, we constructed a chimeric scFv/gamma gene composed of the variable regions of a HER-2/neu specific monoclonal antibody (mAb) joined to the signaling gamma-chain of the Fc(epsilon)RI receptor. The scFv(anti-HER-2/neu)/gamma chimeric gene was successfully expressed as functional surface receptor in the MD.45 cytolytic T-cell (CTL) hybridoma (MD.
View Article and Find Full Text PDF