We demonstrate a hybrid nanocomposite combining mesoporous silica, p , as a host medium and guest lithium niobate nanocrystals embedded into tubular silica nanochannels by calcination of the precursor mixed solution of lithium and niobium salts. High-resolution transmission electron microscopy, X-ray diffraction and Raman scattering techniques reveal trigonal nanocrystals within the p nanochannels, indicating their random texture morphology. Annealing at high temperatures ( 950 C) during calcination also leads to partial crystallization of the p matrix with the formation of trigonal - nanocrystals.
View Article and Find Full Text PDFDiscotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs.
View Article and Find Full Text PDFThe synthesis of nanosized organic benzil (C6H5CO)2 crystals within the mesoporous SiO2 host matrix was investigated via X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and lattice dynamics analysis. Combining these methods, we have proved that the main structural properties of benzil nanocrystals embedded into SiO2 host membranes with pore diameters of 6.0, 7.
View Article and Find Full Text PDFWe demonstrate a series of organic-inorganic nanocomposite materials combining the mesoporous silica (PS) and benzil (BZL) nanocrystals embedded into its nanochannels (6.0-13.0 nm in diameter) by capillary crystallization.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2022
The lattice dynamics of preferentially aligned nanocrystals formed upon drying of aqueous Ba(NO) solutions in a mesoporous silica glass traversed by tubular pores of approximately 12 nm are explored by Raman scattering. To interpret the experiments on the confined nanocrystals polarized Raman spectra of bulk single crystals and X-ray diffraction experiments are also performed. Since a cubic symmetry is inherent to Ba(NO), a special Raman scattering geometry was utilized to separate the phonon modes of A and E species.
View Article and Find Full Text PDFPhotonic metamaterials with properties unattainable in base materials are already beginning to revolutionize optical component design. However, their exceptional characteristics are often static, as artificially engineered into the material during the fabrication process. This limits their application for in-operando adjustable optical devices and active optics in general.
View Article and Find Full Text PDFSecond-order nonlinear optics is the base for a large variety of devices aimed at the active manipulation of light. However, physical principles restrict its occurrence to non-centrosymmetric, anisotropic matter. This significantly limits the number of base materials exhibiting nonlinear optics.
View Article and Find Full Text PDFNanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light-matter interactions at the single-pore, meta-atomic scale.
View Article and Find Full Text PDFDisklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations.
View Article and Find Full Text PDFThe orientational and translational order of a thermotropic ferroelectric liquid crystal (2MBOCBC) imbibed in self-organized, parallel, cylindrical pores with radii of 10, 15, or 20 nm in anodic aluminium oxide monoliths (AAO) are explored by high-resolution linear and circular optical birefringence as well as neutron diffraction texture analysis. The results are compared to experiments on the bulk system. The native oxidic pore walls do not provide a stable smectogen wall anchoring.
View Article and Find Full Text PDFA novel application of coal gangue as inexpensive adsorbents is considered in this study. The structural and surface properties of natural and modified gangue were studied via nitrogen adsorption. Four types of samples were studied: natural, modified with HNO and HO and calcined at 250 °C and 600 °C.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2015
We report a high-resolution dielectric study on a pyrene-based discotic liquid crystal (DLC) in the bulk state and confined in parallel tubular nanopores of monolithic silica and alumina membranes. The positive dielectric anisotropy of the DLC molecule at low frequencies (in the quasistatic case) allows us to explore the thermotropic collective orientational order. A face-on arrangement of the molecular discs on the pore walls and a corresponding radial arrangement of the molecules is found.
View Article and Find Full Text PDFWe report dielectric relaxation spectroscopy experiments on two rod-like liquid crystals of the cyanobiphenyl family (5CB and 6CB) confined in tubular nanochannels with 7 nm radius and 340 micrometer length in a monolithic, mesoporous silica membrane. The measurements were performed on composites for two distinct regimes of fractional filling: monolayer coverage at the pore walls and complete filling of the pores. For the layer coverage a slow surface relaxation dominates the dielectric properties.
View Article and Find Full Text PDFWe report filling-fraction dependent dielectric spectroscopy measurements on the relaxation dynamics of the rod-like nematogen 7CB condensed in 13 nm silica nanochannels. In the film-condensed regime, a slow interface relaxation dominates the dielectric spectra, whereas from the capillary-condensed state up to complete filling an additional, fast relaxation in the core of the channels is found. The temperature-dependence of the static capacitance, representative of the averaged, collective molecular orientational ordering, indicates a continuous, paranematic-to-nematic (P-N) transition, in contrast to the discontinuous bulk behaviour.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative confined in parallelly aligned nanochannels of monolithic, mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3-22 nm) and surface chemistry reveal a competition of radial and axial columnar orders. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies.
View Article and Find Full Text PDFIn this paper we describe the methodology behind the calculation of the indicative surfaces (ISs) of the electric-field-induced optical path length change (EFIOPC) in anisotropic crystal materials accounting for the piezoelectric deformation. It is considered in detail for a particular case of 3m point group symmetry and applied to LiNbO(3) single crystals doped with 7 mol. % MgO (hereafter LiNbO(3):MgO).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2013
Optical birefringence and light absorption measurements reveal four regimes for the thermotropic behavior of a nematogen liquid (7CB) upon sequential filling of parallel-aligned capillaries of 12 nm diameter in a monolithic, mesoporous silica membrane. No molecular reorientation is observed for the first adsorbed monolayer. In the film-condensed state (up to 1 nm thickness), a weak, continuous paranematic-to-nematic (P-N) transition is found, which is shifted by 10 K below the discontinuous bulk transition at T(IN)=305 K.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2012
Proc Natl Acad Sci U S A
June 2012
During spontaneous imbibition, a wetting liquid is drawn into a porous medium by capillary forces. In systems with comparable pore length and diameter, such as paper and sand, the front of the propagating liquid forms a continuous interface. Sections of this interface advance in a highly correlated manner due to an effective surface tension, which restricts front broadening.
View Article and Find Full Text PDFLong-range-corrected (LC) DFT/TDDFT methods may provide adequate description of ground and excited state properties; however, accuracy of such an approach depends much on a range separation (exchange screening) representing adjustable model parameter. Its relation to a size or specific of molecular systems has been explored in numerous studies, whereas the effect of solvent environment is usually ignored during the evaluation of state properties. To benchmark and assess the quality of the LC-DFT/TDDFT formalism, we report the optical absorption and fluorescence emission energies of organic heterocyclic isomers, DPIPQ and PTNA, calculated by LC-BLYP DFT/TDDFT method in the polarizable continuum (PCM) approach.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2010
We study the smectic director structure of the rodlike liquid crystal 4-n-dodecyl-4'-cyanobiphenyl (12CB) confined in cylindrical cavities of 200 nm diameter in porous alumina templates by means of combined broadband dielectric spectroscopy, optical birefringence, and neutron scattering measurements. We show that the collective molecular orientation differs between entering the smectic A phase upon cooling from the isotropic state and entering the same phase upon heating while melting the confined crystal. We discuss this collective molecular realignment in terms of a competition between weak planar anchoring at the p-Al2O3/12CB interface and a preferred texture typical of the crystallization of rodlike molecules in nanochannels (Bridgman growth).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2010
We report combined optical birefringence and neutron scattering measurements on the liquid crystal 12CB nanoconfined in mesoporous silicon layers. This liquid crystal exhibits strong nematic-smectic coupling responsible for a discontinuous isotropic-to-smectic phase transition in the bulk state. Confined in porous silicon, 12CB is subjected to strong anisotropic quenched disorder: a short-ranged smectic state evolves out of a paranematic phase.
View Article and Find Full Text PDFWe report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5 nm and 5 nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16 h investigated.
View Article and Find Full Text PDFWe describe an interferometric technique suitable for determination of piezo-optic coefficients (POCs) in crystals. The method considers real nonparallelism of measured samples, thereby improving the measuring precision of POCs significantly. Corresponding equations are derived for the interferometric half-wave stress method.
View Article and Find Full Text PDF