Publications by authors named "Andriy Shkilnyy"

Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin.

View Article and Find Full Text PDF

We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect).

View Article and Find Full Text PDF

This paper reports the optimization of a perfusion bioreactor system previously reported by us (Chouinard et al., 2009). The implementation of a proportional-integral (PI) controller algorithm to control oxygen concentration and pH is presented and discussed.

View Article and Find Full Text PDF

Biomimetic hybrid materials based on a polymeric and an inorganic component such as calcium phosphate are potentially useful for bone repair. The current study reports on a new approach toward biomimetic hybrid materials using a set of recombinamers (recombinant protein materials obtained from a synthetic gene) as crystallization additive for calcium phosphate. The recombinamers contain elements from elastin, an elastic structural protein, and statherin, a salivary protein.

View Article and Find Full Text PDF

The self-assembly of the amphiphilic block copolymer poly(butadiene)-block-poly[2-(dimethylamino)ethyl methacrylate] at the air-water interface and the mineralization of the monolayers with calcium phosphate was investigated at different pH values. As expected for polyelectrolytes, the subphase pH strongly affects the monolayer properties. The focus of the current study, however, is on the effect of an oscillating (instead of a static) polymer monolayer on calcium phosphate mineralization.

View Article and Find Full Text PDF

Amphiphilic alkyl-poly(ethyleneimine)s (alkyl-PEI) with different degrees of polymerization have been produced by alkaline hydrolysis of alkyl-poly(2-methyl-2-oxazoline). Potentiometric titration of the alkyl-PEI shows the influence of the alkyl chain and the degree of polymerization on the titration curves and hence on the polymer conformation. Karl Fischer titration has been used to determine the water content in the polymers.

View Article and Find Full Text PDF

The present work depicts the efficient one-step synthesis and detailed evaluation of stable aqueous colloids of silver nanoparticles (NPs) coated with poly(ethylene glycol) (PEG) covalently attached to their surface. Due to steric repulsion between polymer-modified surfaces, the stability of the nanoparticle suspension was preserved even at high ionic strength (0.1 M NaCl).

View Article and Find Full Text PDF

Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-controlled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route.

View Article and Find Full Text PDF

Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite.

View Article and Find Full Text PDF

The current paper shows that poly(ethylene imine) (PEI) is an efficient template for the fabrication of spherical calcium phosphate (CaP)/polymer hybrid particles at pH values above 8. The polymer forms spherical entities, which contain one or a few CaP particles with diameters of ca. 6 nm.

View Article and Find Full Text PDF