Publications by authors named "Andriy Oliynyk"

In this study, we recorded the pressure exerted onto an object by the index finger and the thumb of the preferred hand of 18 human subjects and either hand of two macaque monkeys during a precision grasping task. The to-be-grasped object was a custom-made device composed by two plates which could be variably oriented by a motorized system while keeping constant the size and thus grip dimension. The to-be-grasped plates were covered by an array of capacitive sensors to measure specific features of finger adaptation, namely pressure intensity and centroid location and displacement.

View Article and Find Full Text PDF

Whether premotor/motor neurons encode information in terms of spiking frequency or by their relative time of firing, which may display synchronization, is still undetermined. To address this issue, we used an information theory approach to analyze neuronal responses recorded in the premotor (area F5) and primary motor (area F1) cortices of macaque monkeys under four different conditions of visual feedback during hand grasping. To evaluate the sensitivity of spike timing correlation between single neurons, we investigated the stimulus dependent synchronization in our population of pairs.

View Article and Find Full Text PDF

Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP) shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1), contain neurons with similar properties.

View Article and Find Full Text PDF

Background: Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate changes in subthalamic nucleus (STN) neuronal activity in Parkinson's disease (PD) patients during deep brain stimulation (DBS) surgery under general anesthesia, and to compare these data with those recorded in the same subjects during previous surgery under local anesthesia.

Methods: Five patients with advanced PD, who had previously undergone bilateral STN-DBS under local anesthesia, underwent re-implantation under general anesthesia (with an anesthetic protocol based on the intravenous infusion of remifentanyl and ketamine) owing to surgical device complications. The microelectrode recording (MER) data obtained were analyzed by an off-line spike-sorting software.

View Article and Find Full Text PDF