Systematic reviews are labor-intensive processes to combine all knowledge about a given topic into a coherent summary. Despite the high labor investment, they are necessary to create an exhaustive overview of current evidence relevant to a research question. In this work, we evaluate three state-of-the-art supervised multi-label sequence classification systems to automatically identify 24 different experimental design factors for the categories of Animal, Dose, Exposure, and Endpoint from journal articles describing the experiments related to toxicity and health effects of environmental agents.
View Article and Find Full Text PDFJ Am Med Inform Assoc
September 2021
Objective: Clinical notes contain an abundance of important, but not-readily accessible, information about patients. Systems that automatically extract this information rely on large amounts of training data of which there exists limited resources to create. Furthermore, they are developed disjointly, meaning that no information can be shared among task-specific systems.
View Article and Find Full Text PDF