Publications by authors named "Andriy Kvasha"

Anode-free batteries (AFB) have attracted increasing interest in recent times because they allow the elimination of the conventional anode from the cell, exploiting lithium inventory from a lithiated cathode. This implies a much simpler, cost-effective, and sustainable approach. The AFB configuration with liquid electrolytes is being explored widely in research but rarely using solid electrolytes.

View Article and Find Full Text PDF

Rechargeable lithium-sulfur (Li-S) batteries are the most promising next-generation energy storage system owing to their high energy density and low cost. Despite the increasing number of publications on the Li-S technology, the number of studies on real prototype cells is rather low. Furthermore, novel concepts developed using small lab cells cannot simply be transferred to high-energy cell prototypes due to the fundamental differences.

View Article and Find Full Text PDF

The organic solvents that are widely used as electrolytes in lithium ion batteries present safety challenges due to their volatile and flammable nature. The replacement of liquid organic electrolytes by non-volatile and intrinsically safe ceramic solid electrolytes is an effective approach to address the safety issue. However, the high total resistance (bulk and grain boundary) of such compounds, especially at low temperatures, makes those solid electrolyte systems unpractical for many applications where high power and low temperature performance are required.

View Article and Find Full Text PDF

A polymer/ionic liquid thermoplastic solid electrolyte based on poly(ethylene oxide) (PEO), modified sepiolite (TPGS-S), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRTFSI) ionic liquid is prepared using solvent free extrusion method. Its physical-chemical, electrical, and electrochemical properties are comprehensively studied. The investigated solid electrolyte demonstrates high ionic conductivity together with excellent compatibility with lithium metal electrode.

View Article and Find Full Text PDF

2,5-Di- tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) is studied as a redox shuttle additive for overcharge protection for a 1.5 Ah graphite/C-LFP lithium-ion pouch cell for the first time. The electrochemical performance demonstrated that the protecting additive remains inert during the extended standard cycling for 4000 cycles.

View Article and Find Full Text PDF