Publications by authors named "Andriy A Sibirny"

The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.

View Article and Find Full Text PDF

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose.

View Article and Find Full Text PDF

Background: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known.

View Article and Find Full Text PDF

Non-conventional yeasts, i.e. yeasts different from , represent heterogenous group of unicellular fungi consisting of near 1500 species.

View Article and Find Full Text PDF

The methylotrophic yeast Komagataella phaffii is considered one of the most effective producers of recombinant proteins of industrial importance. Effective producers should be characterized by the maximal reduction of degradation of the cytosolic recombinant proteins. The mechanisms of degradation of cytosolic proteins in K.

View Article and Find Full Text PDF

Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities.

View Article and Find Full Text PDF

Background: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development.

View Article and Find Full Text PDF

Background: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines.

View Article and Find Full Text PDF

Many microorganisms are capable of riboflavin oversynthesis and accumulation in a medium, suggesting that they efficiently excrete riboflavin. The mechanisms of riboflavin efflux in microorganisms remain elusive. Candida famata are representatives of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B) in response to iron limitation.

View Article and Find Full Text PDF

The approaches used by the authors to design the Candida famata strains capable to overproduce riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are described. The metabolic engineering approaches include overexpression of SEF1 gene encoding positive regulator of riboflavin biosynthesis, IMH3 (coding for IMP dehydrogenase) orthologs from another species of flavinogenic yeast Debaryomyces hansenii, and the homologous genes RIB1 and RIB7 encoding GTP cyclohydrolase II and riboflavin synthase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the above mentioned genes in the genetically stable riboflavin overproducer AF-4 obtained by classical selection resulted in fourfold increase of riboflavin production in shake flask experiments.

View Article and Find Full Text PDF

Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known.

View Article and Find Full Text PDF

Industrial production of glycerol by yeast, which began during WWI in the so-called Neuberg fermentation, was the first example of metabolic engineering. However, this process, based on bisulfite addition to fermentation liquid, has many drawbacks and was replaced by other methods of glycerol production. Osmotolerant yeasts and other microorganisms that do not require addition of bisulfite to steer cellular metabolism towards glycerol synthesis have been discovered or engineered.

View Article and Find Full Text PDF

Candida famata is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B ) in response to iron limitation. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The corresponding protein and gene have not been identified in yeasts.

View Article and Find Full Text PDF

Riboflavin (vitamin B ) is an indispensable nutrient for humans and animals, since it is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in variety of metabolic reactions. Riboflavin is produced on commercial scale and is used for feed and food fortification purposes, and in medicine. Until recently, the mutant strains of the flavinogenic yeast Candida famata were used in industry for riboflavin production.

View Article and Find Full Text PDF

Higher alcohol isobutanol is a promising liquid fuel. During alcoholic fermentation, Saccharomyces cerevisiae produces only trace amounts of isobutanol. Screening the collection of nonconventional yeasts show that Magnusiomyces magnusii accumulates 440 mg of isobutanol per L in rich YPD medium.

View Article and Find Full Text PDF

This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S.

View Article and Find Full Text PDF

A set of 185 strains of Candida albicans from patients with vulvovaginal candidiasis (VVC) and from non-VVC clinical sources in southwest China was analysed. Strains were subjected to genotyping using CAI microsatellite typing and amplification of an intron-containing region of the 25S rRNA gene. Microsatellite genotypes of strains from non-VVC sources showed high polymorphism, whereas those of VVC were dominated by few, closely similar genotypes.

View Article and Find Full Text PDF

Background: is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by . Further improvement of ethanol production from xylose in depends on the identification of bottlenecks in the xylose conversion pathway to ethanol.

View Article and Find Full Text PDF

Lignocellulosic biomass belongs to main sustainable renewable sources for global energy supply. One of the main challenges in the conversion of saccharified lignocellulosic biomass into bioethanol is the utilization of xylose, since lignocellulosic feedstocks contain a significant amount of this pentose. The non-conventional thermotolerant yeast Ogataea polymorpha naturally ferments xylose to ethanol at elevated temperatures (45°C).

View Article and Find Full Text PDF

Peroxisomal membrane proteins (PMPs) traffic to peroxisomes by two mechanisms: direct insertion from the cytosol into the peroxisomal membrane and indirect trafficking to peroxisomes via the endoplasmic reticulum (ER). In mammals and yeast, several PMPs traffic via the ER in a Pex3- and Pex19-dependent manner. In Komagataella phaffii (formerly called Pichia pastoris) specifically, the indirect traffic of Pex2, but not of Pex11 or Pex17, depends on Pex3, but all PMPs tested for indirect trafficking require Pex19.

View Article and Find Full Text PDF

Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp.

View Article and Find Full Text PDF

Background: Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha.

View Article and Find Full Text PDF

My activities in science have stretched over 45 years, quite a long time. They started in the 1970s, during Brezhnev's rule and continued during the collapse of the Soviet Union and first few decades of an independent Ukrainian state. Unfortunately, most of the time doing science in the Ukraine has been hard.

View Article and Find Full Text PDF