Publications by authors named "Andrius Januskevicius"

Asthma is a chronic inflammatory process that leads to airway narrowing, causing breath loss followed by spasms, wheezing, and shortness of breath. Within the asthmatic lungs, interaction among various immune cells and structural cells plays a significant role in orchestrating an inflammatory response in which eosinophils hold central importance. In these settings, allergens or other environmental exposures commonly drive the immune response to recruit eosinophils to the airways.

View Article and Find Full Text PDF

Anti-interleukin (IL) 5 is an effective treatment modality for inhibiting eosinophilic inflammation in patients with T2-high severe asthma. The aim of this study was to determine the clinical efficacy and serum levels of type 2 inflammatory mediators during 24 weeks of mepolizumab treatment in patients with T2-high severe asthma. Eighteen patients with T2-high severe asthma were enrolled in this study.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the potential of serum biomarkers to differentiate the allergic asthma (AA) phenotype among patients, identifying specific substances that could indicate the condition.
  • Twenty steroid-free AA patients and sixteen healthy subjects were analyzed for ten biologically active substances in their blood before and after bronchial allergen challenges.
  • Significant findings included increased levels of sIL-5Rα and TRX1, and decreased levels of MET, PTX3, and ICTP in AA patients, suggesting these markers may help in diagnosing and understanding allergic asthma.
View Article and Find Full Text PDF
Article Synopsis
  • Airway remodeling in asthma involves increased airway smooth muscle mass and altered extracellular matrix homeostasis, influenced by eosinophil subtypes.
  • Blood eosinophils from allergic and severe eosinophilic asthma patients were studied for their effects on airway smooth muscle (ASM) cell behavior, including proliferation and migration.
  • Results indicated that eosinophil subtypes enhanced the expression of genes related to muscle contraction and ECM components in ASM cells, with a stronger impact observed from lung resident-like eosinophils in severe cases.
View Article and Find Full Text PDF

Blood eosinophils can be described as inflammatory-like (iEOS-like) and lung-resident-like (rEOS-like) eosinophils. This study is based on the hypothesis that eosinophilopoetins such as interleukin (IL)-3 and IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) alter the proliferative properties of eosinophil subtypes and may be associated with the expression of their receptors on eosinophils. We investigated 8 individuals with severe nonallergic eosinophilic asthma (SNEA), 17 nonsevere allergic asthma (AA), and 11 healthy subjects (HS).

View Article and Find Full Text PDF

Background: Cardiovascular remodeling is essential in patients with obstructive sleep apnea (OSA), and continuous positive airway pressure (CPAP) therapy could improve these processes. Two-dimensional (2D) speckle-tracking (ST) echocardiography is a useful method for subclinical biventricular dysfunction diagnosis and thus might help as an earlier treatment for OSA patients. It is still not clear which blood serum biomarkers could be used to assess CPAP treatment efficacy.

View Article and Find Full Text PDF

The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF.

View Article and Find Full Text PDF

Eosinophilic inflammation is one of the main pathophysiological features in asthma. Two subtypes of eosinophils exist in the lung and systemic circulation: lung-resident eosinophils (rEOS) and inflammatory eosinophils (iEOS). We evaluated the expression of αβ and αβ integrins of eosinophil subtypes and their influence on airway smooth muscle (ASM) cell proliferation and viability in asthma.

View Article and Find Full Text PDF

Enhanced contractility and migration of airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) are part of airway remodeling in asthma. Eosinophils are the central inflammatory cells that participate in airway inflammation. However, the role of asthmatic eosinophils in ASMC and PF contractility, migration, and differentiation to contractile phenotype has not yet been precisely described.

View Article and Find Full Text PDF

Eosinophils subtypes as lung-resident (rEOS) and inflammatory (iEOS) eosinophils are different in surface protein expression, functions, response to IL-5 and localization in lungs. rEOS- and iEOS-like eosinophils are found in blood; thus, we aimed to investigate their quantity and survivability in asthma patients. A total of 40 individuals were included: 10 steroid-free non-severe allergic asthma (AA), and 18 severe non-allergic eosinophilic asthma (SNEA) patients, the control group consisted of 12 healthy non-smoking subjects (HS).

View Article and Find Full Text PDF

Eosinophils infiltration and releasing TGF-1 in the airways has been implicated in the pathogenesis of asthma, especially during acute episodes provoked by an allergen. TGF-1 is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling in asthma. We aimed to evaluate the effect of in vivo allergen-activated eosinophils on the expression of and in ASM cells in asthma.

View Article and Find Full Text PDF

The bronchial epithelium has continuous contact with environmental agents initiating and maintaining airway type 2 inflammation in asthma. However, there is a lack of data on whether reduced airway eosinophilic inflammation can affect the production of epithelial-derived mediators, such as interleukin-25 (IL-25) and thymic stromal lymphopoietin (TSLP). The aim of this study was to investigate the changes in serum levels of IL-25 and TSLP after a single dose of mepolizumab, a humanized monoclonal antibody to interleukin-5 (IL-5), in patients with severe non-allergic eosinophilic asthma (SNEA).

View Article and Find Full Text PDF

Allergens are the main trigger that enhances airway type 2 inflammation, and the epithelium is the first line of defense that reacts to its exposure. Therefore, epithelial-derived mediators, such as interleukin (IL)-25, IL-33, thymic stromal lymphopoietin (TSLP) and ezrin, may play a role as alarmins in IL-4/IL-13 signaling in allergic asthma (AA). We investigated the serum levels of IL-25, IL-33, TSLP, ezrin, IL-4 and IL-13, after bronchial challenge with Dermatophagoides pteronyssinus in patients with AA.

View Article and Find Full Text PDF

Before eosinophils migrate into the bronchial lumen, they promote airway structural changes after contact with pulmonary cells and extracellular matrix components. We aimed to investigate the impact of eosinophil adhesion to their viability and pro-proliferative effect on airway smooth muscle (ASM) cells and pulmonary fibroblasts during different asthma phenotypes. A total of 39 individuals were included: 14 steroid-free non-severe allergic asthma (AA) patients, 10 severe non-allergic eosinophilic asthma (SNEA) patients, and 15 healthy control subjects (HS).

View Article and Find Full Text PDF

Background: Severe non-allergic eosinophilic asthma (SNEA) is a rare asthma phenotype associated with severe clinical course, frequent exacerbations, and resistance to therapy, including high steroid doses. The key feature is type 2 inflammation with predominant airway eosinophilia. Eosinophil maturation, activation, survivability, and recruitment are mainly induced by interleukin (IL)-3, IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) through their receptors on eosinophil surface and related with integrins activation states.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin-ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell-cell and cell-extracellular matrix interactions.

View Article and Find Full Text PDF

Background: Recent studies have suggested that eosinophils may have a direct effect on airway smooth muscle cells (ASMC), causing their proliferation in patients with asthma, but the precise mechanism of the interaction between these cells remains unknown. We propose that changes in Wnt signaling activity and extracellular matrix (ECM) production may help explain these findings. Therefore, the aim of this study was to investigate the effect of eosinophils from asthmatic and non-asthmatic subjects on Wnt-5a, transforming growth factor β1 (TGF-β1), and ECM protein (fibronectin and collagen) gene expression and ASMC proliferation.

View Article and Find Full Text PDF