Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2015
Iron-bioceramic composites have been developed as biodegradable implant materials with tailored degradation behavior and bioactive features. In the current work, in vivo bioactivity of the composites was comprehensively studied by using sheep animal model. Five groups of specimens (Fe-HA, Fe-TCP, Fe-BCP composites, and pure-Fe and SS316L as controls) were surgically implanted into medio proximal region of the radial bones.
View Article and Find Full Text PDF