Publications by authors named "Andrii Gryganskyi"

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials.

View Article and Find Full Text PDF
Article Synopsis
  • - The review focuses on six genera within a specific subfamily of fungi that are known to affect arthropods, highlighting the diversity and global distribution of the largest subfamily containing 126 described species.
  • - Most species are not widespread geographically and tend to have narrow host ranges, primarily infecting insects from the orders with the highest fungal species presence.
  • - Challenges for utilizing these fungi in biological control and biotechnological applications include difficulties in culturing them in vitro, limited genomic resources, and varied host specificity among species.
View Article and Find Full Text PDF

The first genome sequenced of a eukaryotic organism was for , as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla and , were sequenced. The genome for was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal versus the primarily mycoparasitic or animal-associated parasites and commensals in the .

View Article and Find Full Text PDF

Fungi of the group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus are very close morphologically to the species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae.

View Article and Find Full Text PDF

Populations of the entomopathogenic fungus Batkoa major were analyzed using sequences of four genomic regions and evaluated in relation to their genetic diversity, insect hosts and collection site. This entomophthoralean pathogen killed numerous insect species from 23 families and five orders in two remote locations during 2019. The host list of this biotrophic pathogen contains flies, true bugs, butterflies and moths, beetles, and barkflies.

View Article and Find Full Text PDF

Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between () (ATCC 52813, host) and its (formerly ) endobacteria versus the antagonism between a nonhost (ATCC 11559) and isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly.

View Article and Find Full Text PDF

Two North American fungal pathogens caused a coepizootic leading to localized collapse of an outbreak population of the newly invasive planthopper pest, the spotted lanternfly (), in the eastern United States. The pathogens partitioned the habitat, with the majority of on tree trunks killed by , while cadavers of killed by were usually on the ground. The future will show whether these pathogens will be drivers in boom-bust cycles or will result in recurrent low population densities of this new invasive species.

View Article and Find Full Text PDF

Background: The genus is most exploitable xylotrophic fungi, with valuable biotechnological, medical, and nutritional properties. The relevant features of the representatives of this genus to provide attractive low-cost industrial tools have been reported in numerous studies to resolve the pressure of ecological issues. Additionally, a number of species are highly adaptive, do not require any special conditions for growth, and possess specific resistance to contaminating diseases and pests.

View Article and Find Full Text PDF

Insect-pathogenic fungi use subtilisin-like serine proteases (SLSPs) to degrade chitin-associated proteins in the insect procuticle. Most insect-pathogenic fungi in the order Hypocreales (Ascomycota) are generalist species with a broad host-range, and most species possess a high number of SLSPs. The other major clade of insect-pathogenic fungi is part of the subphylum Entomophthoromycotina (Zoopagomycota, formerly Zygomycota) which consists of high host-specificity insect-pathogenic fungi that naturally only infect a single or very few host species.

View Article and Find Full Text PDF

Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 strains, classified into four species isolated from habitats of industrial, medical and environmental importance.

View Article and Find Full Text PDF

A new species and genus of entomophthoralean fungus, Arthrophaga myriapodina kills polydesmid millipedes. This species was first seen over a century ago but never described. It is the first millipede pathogen known from the order Entomophthorales, species of which are best known as pathogens of a wide diversity of insects.

View Article and Find Full Text PDF

N6-methyldeoxyadenine (6mA) is a noncanonical DNA base modification present at low levels in plant and animal genomes, but its prevalence and association with genome function in other eukaryotic lineages remains poorly understood. Here we report that abundant 6mA is associated with transcriptionally active genes in early-diverging fungal lineages. Using single-molecule long-read sequencing of 16 diverse fungal genomes, we observed that up to 2.

View Article and Find Full Text PDF

Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade.

View Article and Find Full Text PDF

Molecular methods were used to determine the generic placement of two species of Entomophthorales known only from resting spores. Historically, these species would belong in the form-genus Tarichium, but this classification provides no information about phylogenetic relationships. Using DNA from resting spores, Zoophthora independentia, infecting Tipula (Lunatipula) submaculata in New York State, is now described as a new species and Tarichium porteri, described in 1942, which infects Tipula (Triplicitipula) colei in Tennessee, is transferred to the genus Zoophthora.

View Article and Find Full Text PDF

Most studies of tissue differentiation and development have focused on animals and plants but many fungi form multi-cellular aggregations of spore-bearing tissue known as fruiting bodies or sporocarps. The ability to form sporocarps has arisen independently in several different evolutionary lineages of fungi. Evolutionary relationships of most sporocarp-forming fungi are well known, but the enigmatic zygomycete genus Modicella contains two species of sporocarp-forming fungi for which the phylogenetic affinities have not been explored based on molecular data.

View Article and Find Full Text PDF

The fungus Entomophthora muscae (Entomophthoromycota, Entomophthorales, Entomophthoraceae) is a widespread insect pathogen responsible for fatal epizootic events in many dipteran fly hosts. During epizootics in 2011 and 2012 in Durham, North Carolina, we observed a transition of fungal infections from one host, the plant-feeding fly Delia radicum, to a second host, the predatory fly Coenosia tigrina. Infections first appeared on Delia in the middle of March, but by the end of May, Coenosia comprised 100% of infected hosts.

View Article and Find Full Text PDF

The Entomophthoromycota is a ubiquitous group of fungi best known as pathogens of a wide variety of economically important insect pests, and other soil invertebrates. This group of fungi also includes a small number of parasites of reptiles, vertebrates (including humans), macromycetes, fern gametophytes, and desmid algae, as well as some saprobic species. Here we report on recent studies to resolve the phylogenetic relationships within the Entomophthoromycota and to reliably place this group among other basal fungal lineages.

View Article and Find Full Text PDF

The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R.

View Article and Find Full Text PDF

Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it difficult to determine whether these sequences represent conspecific or novel taxa.

View Article and Find Full Text PDF