Microphysiological systems (MPS) and Organs-on-Chips (OoCs) hold significant potential for replicating complex human biological processes . However, their widespread adoption by industry and regulatory bodies depends on effective qualification to demonstrate that these models are fit for purpose. Many models developed in academia are not initially designed with qualification in mind, which limits their future implementation in end-user settings.
View Article and Find Full Text PDFThe success of cellular immunotherapies such as chimeric antigen receptor (CAR) T cell therapy has led to their implementation as a revolutionary treatment option for cancer patients. However, the safe translation of such novel immunotherapies, from non-clinical assessment to first-in-human studies is still hampered by the lack of suitable and models recapitulating the complexity of the human immune system. Additionally, using cells derived from human healthy volunteers in such test systems may not adequately reflect the altered state of the patient's immune system thus potentially underestimating the risk of life-threatening conditions, such as cytokine release syndrome (CRS) following CAR T cell therapy.
View Article and Find Full Text PDFMicrophysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans.
View Article and Find Full Text PDFUric acid induces radical oxygen species formation, endothelial inflammation, and endothelial dysfunction which contributes to the progression of atherosclerosis. Febuxostat inhibits BCRP- and allopurinol stimulates MRP4-mediated uric acid efflux in human embryonic kidney cells. We hypothesized that endothelial cells express uric acid transporters that regulate intracellular uric acid concentration and that modulation of these transporters by febuxostat and allopurinol contributes to their different impact on cardiovascular mortality.
View Article and Find Full Text PDFThe vascular tree is crucial for the survival and function of large living tissues. Despite breakthroughs in 3D bioprinting to endow engineered tissues with large blood vessels, there is currently no approach to engineer high-density capillary networks into living tissues in a scalable manner. Here, photoannealing of living microtissue (PALM) is presented as a scalable strategy to engineer capillary-rich tissues.
View Article and Find Full Text PDFThrombus formation is a physiological response to damage in a blood vessel that relies on a complex interplay of platelets, coagulation factors, immune cells, and the vessel wall. The dynamics of thrombus formation are essential for a deeper understanding of many disease processes, like bleeding, wound healing, and thrombosis. However, monitoring thrombus formation is challenging due to the limited imaging options available to analyze flowing blood.
View Article and Find Full Text PDFIn recent years, innovative cell-based biosensing systems have been developed, showing impact in healthcare and life science research. Now, there is a need to design mass-production processes to enable their commercialization and reach society. However, current protocols for their fabrication employ materials that are not optimal for industrial production, and their preparation requires several chemical coating steps, resulting in cumbersome protocols.
View Article and Find Full Text PDFThree-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time.
View Article and Find Full Text PDFOrgan-on-chip (OoC) devices are increasingly used to mimic the tissue microenvironment of cells in intact organs. This includes microchannels to mimic, for example, fluidic flow through blood vessels. Present methods for controlling microfluidic flow in these systems rely on gravity, rocker systems or external pressure pumps.
View Article and Find Full Text PDFThe cancer xenograft model in which human cancer cells are implanted in a mouse is one of the most used preclinical models to test the efficacy of novel cancer drugs. However, the model is imperfect; animal models are ethically burdened, and the imperfect efficacy predictions contribute to high clinical attrition of novel drugs. If microfluidic cancer-on-chip models could recapitulate key elements of the xenograft model, then these models could substitute the xenograft model and subsequently surpass the xenograft model by reducing variation, increasing sensitivity and scale, and adding human factors.
View Article and Find Full Text PDFIntracranial aneurysms are pouch-like extrusions from the vessels at the base of the brain which can rupture and cause a subarachnoid hemorrhage. The pathophysiological mechanism of aneurysm formation is thought to be a consequence of blood flow (hemodynamic) induced changes on the endothelium. In this study, the results of a personalized aneurysm-on-a-chip model using patient-specific flow parameters and patient-specific cells are presented.
View Article and Find Full Text PDFIntegrated valves enable automated control in microfluidic systems, as they can be applied for mixing, pumping and compartmentalization purposes. Such automation would be highly valuable for applications in organ-on-chip (OoC) systems. However, OoC systems typically have channel dimensions in the range of hundreds of micrometers, which is an order of magnitude larger than those of typical microfluidic valves.
View Article and Find Full Text PDFOrgans-on-chips are a unique class of microfluidic cell culture models, in which the tissue microenvironment is mimicked. Unfortunately, their widespread use is hampered by their operation complexity and incompatibility with end-user research settings. To address these issues, many commercial and non-commercial platforms have been developed for semi-automated culture of organs-on-chips.
View Article and Find Full Text PDFOrgan-on-chip (OoC) and multi-organs-on-chip (MOoC) systems have the potential to play an important role in drug discovery, disease modeling, and personalized medicine. However, most devices developed in academic labs remain at a proof-of-concept level and do not yet offer the ease-of-use, manufacturability, and throughput that are needed for widespread application. Commercially available OoC are easier to use but often lack the level of complexity of the latest devices in academia.
View Article and Find Full Text PDFOrgan-on-chip (OoC) systems have become a promising tool for personalized medicine and drug development with advantages over conventional animal models and cell assays. However, the utility of OoCs in industrial settings is still limited, as external pumps and tubing for on-chip fluid transport are dependent on error-prone, manual handling. Here, we present an on-chip pump for OoC and Organ-Disc systems, to perfuse media without external pumps or tubing.
View Article and Find Full Text PDFObjective: platelets possess not only haemostatic but also inflammatory properties, which combined are thought to play a detrimental role in thromboinflammatory diseases such as acute coronary syndromes and stroke. Phosphodiesterase (PDE) 3 and -5 inhibitors have demonstrated efficacy in secondary prevention of arterial thrombosis, partially mediated by their antiplatelet action. Yet it is unclear whether such inhibitors also affect platelets' inflammatory functions.
View Article and Find Full Text PDFHuman stem cell-derived cells and tissues hold considerable potential for applications in regenerative medicine, disease modeling and drug discovery. The generation, culture and differentiation of stem cells in low-volume, automated and parallelized microfluidic chips hold great promise to accelerate the research in this domain. Here, we show that we can differentiate human embryonic stem cells (hESCs) to early cardiac mesodermal cells in microfluidic chambers that have a volume of only 30 nanoliters, using discontinuous medium perfusion.
View Article and Find Full Text PDFOrgans-on-chips are in vitro models in which human tissues are cultured in microfluidic compartments with a controlled, dynamic micro-environment. Specific organs-on-chips are being developed to mimic human tumors, but the validation of such 'cancer-on-chip' models for use in drug development is hampered by the complexity and variability of human tumors. An important step towards validation of cancer-on-chip technology could be to first mimic cancer xenograft models, which share multiple characteristics with human cancers but are significantly less complex.
View Article and Find Full Text PDFThe development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions.
View Article and Find Full Text PDFOrgans-on-chips are microphysiological in vitro models of human organs and tissues that rely on culturing cells in a well-controlled microenvironment that has been engineered to include key physical and biochemical parameters. Some systems contain a single perfused microfluidic channel or a patterned hydrogel, whereas more complex devices typically employ two or more microchannels that are separated by a porous membrane, simulating the tissue interface found in many organ subunits. The membranes are typically made of synthetic and biologically inert materials that are then coated with extracellular matrix (ECM) molecules to enhance cell attachment.
View Article and Find Full Text PDFstudies which focus on cellular metabolism can benefit from time-resolved readouts from the living cells. pH and O concentration are fundamental parameters upon which cellular metabolism is often inferred. This work demonstrates a novel use of a ruthenium oxide (RuO) electrode for studies.
View Article and Find Full Text PDFThe outer blood-retinal barrier (oBRB) tightly controls the transport processes between the neural tissue of the retina and the underlying blood vessel network. The barrier is formed by the retinal pigment epithelium (RPE), its basal membrane and the underlying choroidal capillary bed. Realistic three-dimensional cell culture based models of the oBRB are needed to study mechanisms and potential treatments of visual disorders such as age-related macular degeneration that result from dysfunction of the barrier tissue.
View Article and Find Full Text PDFMicrofluidic devices are used extensively in the development of new in vitro cell culture models like organs-on-chips. A typical feature of such devices is the patterning of biological hydrogels to offer cultured cells and tissues a controlled three-dimensional microenvironment. A key challenge of hydrogel patterning is ensuring geometrical confinement of the gel, which is generally solved by inclusion of micropillars or phaseguides in the channels.
View Article and Find Full Text PDFOrgan-on-a-chip devices have been widely used in biomedical science and technology, for example for experimental regenerative medicine and precision healthcare. The main advantage of organ-on-a-chip technology is the facility to build a specific human model that has functional responses on the level of organs or tissues, thereby avoiding the use of animal models, as well as greatly improving new drug discovery processes for personal healthcare. An emerging application domain for organs-on-chips is the study of internal irradiation for humans, which faces the challenges of the lack of a clear model for risk estimation of internal irradiation.
View Article and Find Full Text PDF