Publications by authors named "Andriana F Aravantinou"

The scope of this study was to investigate the toxic effects of zinc oxide (ZnO) nanoparticles (NPs) on freshwater microalgae, in long-term semi-batch feeding mode at two different hydraulic retention times (HRTs) (20 and 40 days). A freshwater microalgae, was employed and exposed to a semi-continuous supply of ZnO NPs at a low concentration of 0.081 mg/L for a period of 28 d.

View Article and Find Full Text PDF

The aim of this work was to investigate the long-term toxic effect of zinc oxide (ZnO) nanoparticles (NPs) on freshwater microalgae, combined with the nutrient consumption in the culture. For this purpose, two common microalgae media (Blue-Green 11, BG-11, and Bold's Basal Medium, BBM) were used. Scenedesmus rubescens was used as freshwater microalgae model species and was exposed to ZnO NPs at different concentrations (0.

View Article and Find Full Text PDF

The aim of this work was to investigate the effect of zinc oxide nanoparticles (ZnO NPs) on freshwater and marine microalgae cultivated in different media. Freshwater species Chlorococcum sp. and Scenedesmus rubescens were cultivated in modified Blue-Green medium (BG-11) and Bold's Basal Medium (BBM), and marine species Dunaliella tertiolecta, and Tetraselmis suesica, cultured in salt modified BG-11 and f/2 medium.

View Article and Find Full Text PDF

In the present study, ten microalgal strains found in fresh and saline waters were cultured, and used to conduct batch experiments in order to evaluate their potential contribution to nutrient removal and biofuel production. The growth rate of microalgae was inversely analogous to their initial concentration. Three freshwater strains were selected, based on their growth rate, and their behavior with synthetic wastewater was further investigated.

View Article and Find Full Text PDF

Virus inactivation is one of the most important factors that controls virus fate and transport in the subsurface. In this study the inactivation of viruses in the presence of quartz sand was examined. The bacteriophages MS2 and ΦX174 were used as model viruses.

View Article and Find Full Text PDF