ACS Appl Mater Interfaces
July 2022
The band offsets for the β-(AlGa)O/β-GaO (010) heterojunction have been experimentally measured by X-ray photoelectron spectroscopy. High-quality β-(AlGa)O films were grown by metal-organic chemical vapor deposition for characterization. The indirect band gap of β-(AlGa)O was determined by optical transmission to be 4.
View Article and Find Full Text PDFPiezoresponse force microscopy is used to study the velocity of the polarization domain wall in ultrathin ferroelectric barium titanate (BTO) films grown on strontium titanate (STO) substrates by molecular beam epitaxy. The electric field due to the cone of the atomic force microscope tip is demonstrated as the dominant electric field for domain expansion in thin films at lateral distances greater than about one tip diameter away from the tip. The velocity of the domain wall under the applied electric field by the tip in BTO for thin films (less than 40 nm) followed an expanding process given by Merz's law.
View Article and Find Full Text PDFIn this work, a SiGeSn/GeSn/SiGeSn single quantum well was grown and characterized. The sample has a thicker GeSn well of 22nm compared to a previously reported 9nm well configuration. The thicker well leads to: (i) lowered ground energy level in Γ valley offering more bandgap directness; (ii) increased carrier density in the well; and (iii) improved carrier collection due to increased barrier height.
View Article and Find Full Text PDFUnlabelled: Strain engineering as one of the most powerful techniques for tuning optical and electronic properties of Ill-nitrides requires reliable methods for strain investigation. In this work, we reveal, that the linear model based on the experimental data limited to within a small range of biaxial strains (< 0.2%), which is widely used for the non-destructive Raman study of strain with nanometer-scale spatial resolution is not valid for the binary wurtzite-structure group-III nitrides GaN and AlN.
View Article and Find Full Text PDFThe GeSn-based quantum wells (QWs) have been investigated recently for the development of efficient GeSn emitters. Although our previous study indicated that the direct bandgap well with type-I band alignment was achieved, the demonstrated QW still has insufficient carrier confinement. In this work, we report the systematic study of light emission from the GeSn/GeSn/GeSn double QW structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
We experimentally demonstrate that the conductivity of graded AlGaN increases as a function of the magnitude of the Al concentration gradient (%Al/nm) due to polarization doping effects, without the use of impurity dopants. Using three up/down-graded AlGaN nanolayers with Al gradients ranging from ∼0.16 to ∼0.
View Article and Find Full Text PDFAn enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (FeO) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with FeO.
View Article and Find Full Text PDFA SiGeSn/GeSn/SiGeSn single quantum well structure was grown using an industry standard chemical vapor deposition reactor with low-cost commercially available precursors. The material characterization revealed the precisely controlled material growth process. Temperature-dependent photoluminescence spectra were correlated with band structure calculation for a structure accurately determined by high-resolution x-ray diffraction and transmission electron microscopy.
View Article and Find Full Text PDFSuperlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation.
View Article and Find Full Text PDFThe depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls.
View Article and Find Full Text PDFWe report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface.
View Article and Find Full Text PDFIn this work, the influence of micro- and macro-deformation profiles in GaN nanowires (NWs) on the angular intensity distribution of X-ray diffraction are studied theoretically. The calculations are performed by using kinematical theory of X-ray diffraction and assuming the deformation decays exponentially from the NW/substrate interface. Theoretical modeling of X-ray scattering from NWs with different deformation profiles are carried out.
View Article and Find Full Text PDFSilicon-rich Al2O3 films (Six(Al2O3)1-x) were co-sputtered from two separate silicon and alumina targets onto a long silicon oxide substrate. The effects of different annealing treatments on the structure and light emission of the films versus x were investigated by means of spectroscopic ellipsometry, X-ray diffraction, micro-Raman scattering, and micro-photoluminescence (PL) methods. The formation of amorphous Si clusters upon the deposition process was found for the films with x ≥ 0.
View Article and Find Full Text PDFWe present a comparative study of the strain relaxation of GaN/AlN short-period superlattices (SLs) grown on two different III-nitride substrates introducing different amounts of compensating strain into the films. We grow by plasma-assisted molecular beam epitaxy (0001)-oriented SLs on a GaN buffer deposited on GaN(thick)-on-sapphire template and on AlN(thin)-on-sapphire template. The ex-situ analysis of strain, crack formation, dislocation density, and microstructure of the SL layers has established that the mechanism of strain relaxation in these structures depends on the residual strain in substrate and is determined mainly by the lattice mismatch between layers.
View Article and Find Full Text PDF