Urban surface deposited sediments (USDS) are unique indicators of local pollution that pose a potential threat to the living environment and human health. Ekaterinburg is a highly populated metropolitan area in Russia with rapid urbanization and industrialization activities. In Ekaterinburg's residential areas, about 35, 12, and 16 samples are represented by green zones, roads, driveways, and sidewalks, respectively.
View Article and Find Full Text PDFIn this study, the human health risks of potentially harmful elements (PHEs) in urban surface deposited sediments (USDS) were examined by collecting urban dust samples, measuring their PHE concentrations, and using index evaluation. About 35, 12 and 16 samples are represented a green zones, roads, driveways and sidewalks in residential areas of Ekaterinburg, respectively. The dust fraction (0.
View Article and Find Full Text PDFThe protection of the urban environment from radioactive wastes (including technologically enhanced natural radionuclides) and potentially harmful elements have recently become very critical. Thus, the present study aimed to assess the radioactive levels in low-volume samples of dust and fine sand fractions of the urban surface deposited sediments (USDS) collected in three Russian cities. The detection was conducted via CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used to detect gross alpha activity concentrations.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2020
Study of gross beta activity was conducted in Russian cities Ekaterinburg, Rostov-on-Don, and Nizhny Novgorod. The cities were characterized by continental climate, although they are located in different geographical zones. The bulk urban samples were fractionated with three size fractions: dust (0.
View Article and Find Full Text PDFThis paper presents results of an analysis of potentially harmful elements (PHEs, Pb, Zn and Cu) and conservative element (CE, Fe) concentrations in urban surface deposited sediment (USDS). The study was conducted in seven large Russian cities located in different geographic and climatic zones, and in territories with different geology and anthropogenic pressures: Chelyabinsk, Magnitogorsk, Nizhniy Novgorod, Nizhniy Tagil, Rostov-on-Don, Tyumen, and Ufa. The initial geochemical baseline relationships between PHEs and CE concentrations in the USDS were reconstructed for each city applying an approach based on linear weighted fitting of PHE as a function of CE with lower weights assigned to more polluted samples.
View Article and Find Full Text PDFThe (137)Cs-based chronological approach is suggested to identify the age of urban landscapes and the chronology of pollution of soil in residential areas. Three main pivot points constitute the basis of the chronological approach: beginning of the Atomic Era in 1945, the maximum input in 1963 and the Chernobyl accident in 1986. Application of (137)Cs as a timescale tracer was tested on the example of Ekaterinburg, a city in the Middle Urals region of Russia.
View Article and Find Full Text PDFThe role of puddle sediments as a final depot of (137)Cs horizontal migration within the urban landscape is studied using the example of Ekaterinburg city, Russia. Radioactive contamination in the city appeared due to fallout after atmospheric testing of nuclear weapons and nuclear accidents. Contamination density of (137)Cs in the region was assessed from archive data to be about 5.
View Article and Find Full Text PDF