IEEE/ACM Trans Comput Biol Bioinform
April 2022
In unsupervised learning literature, the study of clustering using microarray gene expression datasets has been extensively conducted with nonnegative matrix factorization (NMF), spectral clustering, kmeans, and gaussian mixture model (GMM)are some of the most used methods. However, there is still a limited number of works that utilize statistical analysis to measure the significances of performance differences between these methods. In this paper, statistical analysis of performance differences between ten NMF, six spectral clustering, four GMM, and the standard kmeans algorithms in clustering eleven publicly available microarray gene expression datasets with the number of clusters ranges from two to ten is presented.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2017
Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2017
Recently, feature selection and dimensionality reduction have become fundamental tools for many data mining tasks, especially for processing high-dimensional data such as gene expression microarray data. Gene expression microarray data comprises up to hundreds of thousands of features with relatively small sample size. Because learning algorithms usually do not work well with this kind of data, a challenge to reduce the data dimensionality arises.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2016
The Tikhonov regularized nonnegative matrix factorization (TNMF) is an NMF objective function that enforces smoothness on the computed solutions, and has been successfully applied to many problem domains including text mining, spectral data analysis, and cancer clustering. There is, however, an issue that is still insufficiently addressed in the development of TNMF algorithms, i.e.
View Article and Find Full Text PDF