Soil properties influence plant physiology and growth, playing a fundamental role in shaping species niches in temperate forest ecosystems. Here, we investigated the impact of soil data quality on the performance of species distribution models (SDMs) of 41 woody plant species in Swiss forests. We compared models based on measured soil properties with those based on digitally mapped soil properties on regional (Swiss Forest Soil Maps) and global scales (SoilGrids).
View Article and Find Full Text PDFThe record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed.
View Article and Find Full Text PDFStorms represent a major disturbance factor in forest ecosystems, but the effects of windthrows on soil organic carbon (SOC) stocks are poorly quantified. Here, we assessed the SOC stocks of windthrown forests at 19 sites across Switzerland spanning an elevation gradient from 420 to 1550 m, encompassing a strong climatic gradient. Results show that the effect size of disturbance on SOC stocks increases with the size of the initial SOC stocks.
View Article and Find Full Text PDFCentral Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information.
View Article and Find Full Text PDFThe response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes.
View Article and Find Full Text PDFLight is a key driver of forest biodiversity and functioning. Light regimes beneath tree canopies are mainly driven by the solar angle, topography, and vegetation structure, whose three-dimensional complexity creates heterogeneous light conditions that are challenging to quantify, especially across large areas. Remotely sensed canopy structure data from airborne laser scanning (ALS) provide outstanding opportunities for advancement in this respect.
View Article and Find Full Text PDFAlthough the Burgundy truffle (Tuber aestivum) is an ectomycorrhizal fungus of important economic value, its subterranean life cycle and population biology are still poorly understood. Here, we determine mating type and simple sequence repeat (SSR) maternal genotypes of mapped fruiting bodies to assess their genetic structure within two naturally colonized forest sites in southern Germany. Forty-one genotypes were identified from 112 fruiting bodies.
View Article and Find Full Text PDFEuropean beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions.
View Article and Find Full Text PDF