IEEE Trans Neural Netw Learn Syst
October 2023
A cross domain multistream classification is a challenging problem calling for fast domain adaptations to handle different but related streams in never-ending and rapidly changing environments. Notwithstanding that existing multistream classifiers assume no labeled samples in the target stream, they still incur expensive labeling costs since they require fully labeled samples of the source stream. This article aims to attack the problem of extreme label shortage in the cross domain multistream classification problems where only very few labeled samples of the source stream are provided before process runs.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2023
A deep clustering network (DCN) is desired for data streams because of its aptitude in extracting natural features thus bypassing the laborious feature engineering step. While automatic construction of deep networks in streaming environments remains an open issue, it is also hindered by the expensive labeling cost of data streams rendering the increasing demand for unsupervised approaches. This article presents an unsupervised approach of DCN construction on the fly via simultaneous deep learning and clustering termed autonomous DCN (ADCN).
View Article and Find Full Text PDF