Bivalve mollusks frequently experience salinity fluctuations that may drive oxidative stress (OS) in the organism. Here we investigated OS markers and histopathological changes in gills and hemolymph of Mediterranean mussels Mytilus galloprovincialis Lamarck, 1819 exposed to a wide range of salinities (6, 10, 14, 24, and 30 ppt). Mussels were captured at the shellfish farm with the salinity 18 ppt and then exposed to hypo- and hypersaline conditions in the laboratory.
View Article and Find Full Text PDFThere is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels.
View Article and Find Full Text PDFNanoparticles (NPs) are widely used in various fields, including antifouling paints for ships and industrial structures submerged in water. The potential impact of NPs on aquatic organisms, particularly their potential toxicity, is a significant concern, as their negative impact has been relatively poorly studied. In this study, we evaluated the effect of different concentrations of bimetallic Ag-TiO₂ and ZnTi₂O₄-TiO₂ NPs, which could potentially be used in antifouling coatings, on the hemocytes of the Mediterranean mussel Mytilus galloprovincialis.
View Article and Find Full Text PDFT cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood.
View Article and Find Full Text PDFSemi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS).
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2024
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g.
View Article and Find Full Text PDFMethane are widely used in industry as an emerge source may be released significantly higher aquatic ecosystems due to gas seepages. In this study, short-term (90 min) methane effects on bivalve hemocytes were investigated using flow cytometry. Hemocyte parameters including hemolymph cellular composition, phagocytosis activity, mitochondrial membrane potential and reactive oxygen species (ROS) content were evaluated in the mussel Mytilus galloprovincialis (Lamarck, 1819) exposed to hypoxia (control group), pure methane and industrial methane (industrial hydrocarbon mixture).
View Article and Find Full Text PDFBivalve mollusks that inhabit low-depth coastal and estuarine areas frequently experience osmotic stress that may be also associated with alterations of antioxidant enzyme activities and markers of oxidative stress. Mitochondria are a major source of reactive oxygen species (ROS) in eucaryotic cells. Overpoduction of ROS induces oxidative stress leading to a damage of intracellular compartments and cell death.
View Article and Find Full Text PDFBivalve mollusks as typical osmoconformers are unable to maintain a constant level of internal osmolarity in conditions of salinity stress. Adaptation to fluctuations of environmental salinity is achieved through cellular osmoregulatory responses, which are accompanied with a substantial shift in functional state of cells. In the present work we investigated the effect of hypersalinity stress on hemolymph cellular composition and morphology of the ark clam (Anadara kagoshimensis) hemocytes.
View Article and Find Full Text PDFMussels were exposed to di-(2-ethylhexyl) phthalate (DEHP) (0.4 mg L and 4.0 mg L) for 24 h and 48 h and its effect on hemocyte cellular composition and spontaneous reactive oxygen production (ROS) levels in hemocytes were evaluated.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2022
This study describes the analysis of antioxidant enzymatic activities (catalase and superoxide dismutase) in gills and functional state of hemocytes (osmotic stability, mitochondrial membrane potential) of ark clams (Anadara kagoshimensis) from the Black Sea basin exposed to salinity stress. For this, the effects of 48 h periods of exposure to low (8 ‰, 14 ‰) and high (35 ‰, 45 ‰) salinity were assessed. Our results showed that ark clams, A.
View Article and Find Full Text PDFIn the present work, we studied the effect of short-term acute hypoxia on the cellular composition of the blood and the head kidney of the black scorpionfish. Dissolved oxygen concentration was decreased from 8.5-8.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
June 2022
Many bivalve species are considered to be euryhaline organisms due to effective adaptation to fluctuations of environmental salinity. Cellular mechanisms responsible for tolerance to salinity changes remain unclear for bivalves despite this question being critically important for commercially cultured species frequently introduced into regions differing from natural habitat by salinity regime. In the present work laser diffraction method was used for the analysis of volume changes in hemoglobin-containing ark clam (Anadara kagoshimensis) hemocytes following hyposmotic stimulation.
View Article and Find Full Text PDFBivalve mollusks are frequently subjected to fluctuations of dissolved oxygen concentration in the environment which can represent a significant threat to bivalve antioxidant status. In this work the effects of hypoxia on hemocyte reactive oxygen species (ROS) production and level of mitochondrial potential as well as the activity and expression level of catalase (CAT) and superoxide dismutase (SOD) in gills of Crassostrea gigas were investigated after 24 h and 72 h exposure. 24 h hypoxia promoted an increase of mitochondrial membrane potential in agranulocytes and induced ROS accumulation in granulocytes.
View Article and Find Full Text PDFActivation of the cAMP pathway by β-adrenergic stimulation and cGMP pathway by activation of guanylate cyclase substantially affects red blood cell (RBC) membrane properties in mammals. However, whether similar mechanisms are involved in RBC regulation of lower vertebrates, especially teleosts, is not elucidated yet. In this study, we evaluated the effects of adenylate cyclase activation by epinephrine and forskolin, guanylate cyclase activation by sodium nitroprusside, and the role of Na/H-exchanger in the changes of osmotic fragility and regulatory volume decrease (RVD) response in crucian carp RBCs.
View Article and Find Full Text PDFThe influence of hypothermia on erythrocyte profile of thermophile teleost species round goby, Neogobius melanostomus (Pallas, 1814), has been studied. Fish were acclimated to temperature 1-2С, 15-16С and 19-20С (control group) and held at given conditions for 5 days. The number of red blood cell precursors (pronormoblasts, basophilic and polychromatophilic normoblasts) in circulating blood has been estimated.
View Article and Find Full Text PDFFish Shellfish Immunol
March 2020
Circulating hemocytes of ark clam, Anadara kagoshimensis, were investigated using light microscopy and flow cytometry. Hemolymph contained 3 morphotype of cells, amebocytes, erythrocytes and intermediate type cells, which formed two distinct subpopulations on flow cytometric dot plots. Large cells (intermediate morphotype and erythrocytes) amounted 85.
View Article and Find Full Text PDFFish red blood cells (RBCs) exhibit an oxygen-dependent regulatory volume decrease (RVD) in hypoosmotic environment. In higher vertebrates, membrane-associated hemoglobin is involved in the regulation of osmotic ion movements across the cellular membrane. However, whether the hemoglobin conformational state plays a role in the regulation of osmotic responses in fish red blood cells is still not fully understood.
View Article and Find Full Text PDFRecent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM-induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling.
View Article and Find Full Text PDFThe circulating hemocytes of cultivated marine mussel (Mytilus galloprovincialis) were investigated using light microscopy and flow cytometry. In mussels two cell types, granulocytes and agranulocytes, were identified based on the existence of two subpopulations of cells differing by size and granularity level on light-scattered plots. Light microscopic observation confirmed the presence of cells with cytoplasmic granules and cells without granulation in hemolymph of mussels.
View Article and Find Full Text PDFTo identify cells and analyze proliferative activity of hematopoietic tissue, black scorpionfish head kidney and spleen cells were characterized by light microscopy and flow cytometry. Hematopoiesis of black scorpionfish head kidney was formed by the following series: erythropoietic, granulopoietic, lymphopoietic, and thrombopoietic. Flow cytometric analysis allowed dividing blood cells in hematopoietic organs into subpopulations differing by size, granularity, and proliferative activity.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2018
Red blood cells of vertebrates can restore their cellular volume after hyposmotic swelling. The process strictly depends on oxygen availability in the environment. However, the role of hemoglobin in regulation of cell volume recovery is not clear yet.
View Article and Find Full Text PDFCell suspensions of head kidney and spleen of black scorpionfish (Scorpaena porcus L.) have been studied using flow cytometry and light microscopy. On the basis of forward scatter (FS) and side scatter (SS) distribution and light microscopy, two main types of cells in the hemopoietic organs were identified: "small cells" (5.
View Article and Find Full Text PDFThe investigation of the mechanisms of red blood cell steadiness to the oxygen lack in tolerant teleosts is of current scientific interest. Black scorpionfish, Scorpaena porcus L., is a widespread benthal species in the Black Sea and is highly resistant to hypoxic influence.
View Article and Find Full Text PDF