We investigated decays of ^{51,52,53}K at the ISOLDE Decay Station at CERN in order to understand the mechanism of the β-delayed neutron-emission (βn) process. The experiment quantified neutron and γ-ray emission paths for each precursor. We used this information to test the hypothesis, first formulated by Bohr in 1939, that neutrons in the βn process originate from the structureless "compound nucleus.
View Article and Find Full Text PDFIn Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFThe changes in mean-squared charge radii of neutron-deficient gold nuclei have been determined using the in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN). From these new data, nuclear deformations are inferred, revealing a competition between deformed and spherical configurations. The isotopes ^{180,181,182}Au are observed to possess well-deformed ground states and, when moving to lighter masses, a sudden transition to near-spherical shapes is seen in the extremely neutron-deficient nuclides, ^{176,177,179}Au.
View Article and Find Full Text PDFThe β decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to β, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant β-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their β decays selectively populate only a few isolated neutron unbound states in ^{133}Sn.
View Article and Find Full Text PDFA causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate.
View Article and Find Full Text PDFThe new isotope ^{241}U was synthesized and systematic atomic mass measurements of nineteen neutron-rich Pa-Pu isotopes were performed in the multinucleon transfer reactions of the ^{238}U+^{198}Pt system at the KISS facility. The present experimental results demonstrate the crucial role of the multinucleon transfer reactions for accessing unexplored neutron-rich actinide isotopes toward the N=152 shell gap in this region of nuclides.
View Article and Find Full Text PDFLysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues.
View Article and Find Full Text PDFTwo long-standing puzzles in the decay of ^{185}Bi, the heaviest known proton-emitting nucleus are revisited. These are the nonobservation of the 9/2^{-} state, which is the ground state of all heavier odd-A Bi isotopes, and the hindered nature of proton and α decays of its presumed 60-μs 1/2^{+} ground state. The ^{185}Bi nucleus has now been studied with the ^{95}Mo(^{93}Nb,3n) reaction in complementary experiments using the Fragment Mass Analyzer and Argonne Gas-Filled Analyzer at Argonne National Laboratory's ATLAS facility.
View Article and Find Full Text PDFThe changes in the mean-square charge radius (relative to ^{209}Bi), magnetic dipole, and electric quadrupole moments of ^{187,188,189,191}Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in ^{187,188,189}Bi^{g}, manifested by a sharp radius increase for the ground state of ^{188}Bi relative to the neighboring ^{187,189}Bi^{g}. A large isomer shift was also observed for ^{188}Bi^{m}.
View Article and Find Full Text PDFMacrophage proinflammatory activation is an important etiologic component of the development of insulin resistance and metabolic dysfunction in obesity. However, the underlying mechanisms are not clearly understood. Here, we demonstrate that a mitochondrial inner membrane protein, adenine nucleotide translocase 2 (ANT2), mediates proinflammatory activation of adipose tissue macrophages (ATMs) in obesity.
View Article and Find Full Text PDFHow natural or innate-like lymphocytes generate the capacity to produce IL-4 and other cytokines characteristic of type 2 immunity remains unknown. Invariant natural killer T (iNKT) cells differentiate in the thymus into NKT1, NKT2, and NKT17 subsets, similar to mature, peripheral CD4 T helper cells. The mechanism for this differentiation was not fully understood.
View Article and Find Full Text PDFNormal contractile function of the heart depends on a constant and reliable production of ATP by cardiomyocytes. Dysregulation of cardiac energy metabolism can result in immature heart development and disrupt the ability of the adult myocardium to adapt to stress, potentially leading to heart failure. Further, restoration of abnormal mitochondrial function can have beneficial effects on cardiac dysfunction.
View Article and Find Full Text PDFA new α-emitting isotope ^{214}U, produced by the fusion-evaporation reaction ^{182}W(^{36}Ar,4n)^{214}U, was identified by employing the gas-filled recoil separator SHANS and the recoil-α correlation technique. More precise α-decay properties of even-even nuclei ^{216,218}U were also measured in the reactions of ^{40}Ar, ^{40}Ca beams with ^{180,182,184}W targets. By combining the experimental data, improved α-decay reduced widths δ^{2} for the even-even Po-Pu nuclei in the vicinity of the magic neutron number N=126 are deduced.
View Article and Find Full Text PDFIsotopic distributions of fragments from fission of the neutron-deficient ^{178}Hg nuclide are reported. This experimental observable is obtained for the first time in the region around lead using an innovative approach based on inverse kinematics and the coincidence between the large acceptance magnetic spectrometer VAMOS++ and a new detection arm close to the target. The average fragment N/Z ratio and prompt neutron M_{n} multiplicity are derived and compared with current knowledge from actinide fission.
View Article and Find Full Text PDFMetabolism is a critical determinant of immune cell functionality. Immunometabolism, by definition, is a multidisciplinary area of immunology research that integrates the knowledge of energy transduction mechanisms and biochemical pathways. An important concept in the field is metabolic switch, a transition of immune cells upon activation to preferential utilization of select catabolic pathways for their energy needs.
View Article and Find Full Text PDFInflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTβR), which binds LIGHT, also led to aggravated colitis pathogenesis.
View Article and Find Full Text PDFCCR6CXCR3CCR4CD4 memory T cells, termed Th1*, are important for long-term immunity to and the pathogenesis of autoimmune diseases. Th1* cells express a unique set of lineage-specific transcription factors characteristic of both Th1 and Th17 cells and display distinct gene expression profiles compared with other CD4 T cell subsets. To examine molecules and signaling pathways important for the effector function of Th1* cells, we performed loss-of-function screening of genes selectively enriched in the Th1* subset.
View Article and Find Full Text PDFThe β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay.
View Article and Find Full Text PDFDecreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia.
View Article and Find Full Text PDFMitochondria and oxidative metabolism are critical for maintaining cardiac muscle function. Research has shown that mitochondrial dysfunction is an important contributing factor to impaired cardiac function found in heart failure. By contrast, restoring defective mitochondrial function may have beneficial effects to improve cardiac function in the failing heart.
View Article and Find Full Text PDFPET acquisition and reconstruction are time-consuming. A PET preview image is commonly reconstructed at the end of data acquisition of each bed-position frame in the step-and-shoot mode. We propose a scheme to reconstruct, stream, and visualize the PET preview image during acquisition to provide quasi-real-time visual feedback.
View Article and Find Full Text PDFLong-chain fatty acid (LCFA) oxidation has been shown to play an important role in interleukin-4 (IL-4)-mediated macrophage polarization (M(IL-4)). However, many of these conclusions are based on the inhibition of carnitine palmitoyltransferase-1 with high concentrations of etomoxir that far exceed what is required to inhibit enzyme activity (EC < 3 μM). We employ genetic and pharmacologic models to demonstrate that LCFA oxidation is largely dispensable for IL-4-driven polarization.
View Article and Find Full Text PDF