Background: Enumeration of residual DNA repair foci 24 hours or more after exposure to ionizing radiation (IR) is often used to assess the efficiency of DNA double-strand break repair. However, the relationship between the number of residual foci in irradiated cells and the radiation dose is still poorly understood. The aim of this work was to investigate the dose responses for residual DNA repair foci in normal human fibroblasts after X-ray exposure in the absorbed dose range from 0.
View Article and Find Full Text PDFRadiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT).
View Article and Find Full Text PDFThe effects of low-dose radiation exposure remain a controversial topic in radiation biology. This study compares early (0.5, 4, 24, 48, and 72 h) and late (5, 10, and 15 cell passages) post-irradiation changes in γH2AX, 53BP1, pATM, and p-p53 (Ser-15) foci, proliferation, autophagy, and senescence in primary fibroblasts exposed to 100 and 2000 mGy X-ray radiation.
View Article and Find Full Text PDFResistance to chemo- or radiotherapy is the main obstacle to consistent treatment outcomes in oncology patients. A deeper understanding of the mechanisms driving the development of resistance is required. This review focuses on secretory factors derived from chemo- and radioresistant cancer cells, cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), and cancer stem cells (CSCs) that mediate the development of resistance in unexposed cells.
View Article and Find Full Text PDFUnderstanding the relative contributions of different repair pathways to radiation-induced DNA damage responses remains a challenging issue in terms of studying the radiation injury endpoints. The comparative manifestation of homologous recombination (HR) after irradiation with different doses greatly determines the overall effectiveness of recovery in a dividing cell after irradiation, since HR is an error-free mechanism intended to perform the repair of DNA double-strand breaks (DSB) during S/G2 phases of the cell cycle. In this article, we present experimentally observed evidence of dose-dependent shifts in the relative contributions of HR in human fibroblasts after X-ray exposure at doses in the range 20-1000 mGy, which is also supported by quantitative modeling of DNA DSB repair.
View Article and Find Full Text PDFDNA repair (DNA damage) foci observed 24 h and later after irradiation are called "residual" in the literature. They are believed to be the repair sites for complex, potentially lethal DNA double strand breaks. However, the features of their post-radiation dose-dependent quantitative changes and their role in the processes of cell death and senescence are still insufficiently studied.
View Article and Find Full Text PDFThe major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies.
View Article and Find Full Text PDFRadioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq.
View Article and Find Full Text PDFThe overall effect of senescence on cancer progression and cancer cell resistance to X-ray radiation (IR) is still not fully understood and remains controversial. How to induce tumor cell senescence and which senescent cell characteristics will ensure the safest therapeutic strategy for cancer treatment are under extensive investigation. While the evidence for passage number-related effects on malignant primary cells or cell lines is compelling, much less is known about how the changes affect safety and Senescence-Associated Secretory Phenotype (SASP), both of which are needed for the senescence cell-based vaccine to be effective against cancer.
View Article and Find Full Text PDFRadioresistance compromises the efficacy of radiotherapy for glioblastoma multiforme (GBM), the most devastating and common brain tumor. The present study investigated the relationship between radiation tolerance and formation of polyploid/multinucleated giant (PGCC/MGCC) and quiescent/senescent slow-cycling cancer cells in human U-87, LN-229, and U-251 cell lines differing in status and radioresistance. We found significant enrichment in MGCC populations of U-87 and LN-229 cell lines, and generation of numerous small mononuclear (called Raju cells, or RJ cells) U-87-derived cells that eventually form cell colonies, in a process termed neosis, in response to X-ray irradiation (IR) at single acute therapeutic doses of 2-6 Gy.
View Article and Find Full Text PDFIonizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes.
View Article and Find Full Text PDFCancer stem cells (CSCs) play a critical role in the initiation, progression and therapy relapse of many cancers including non-small cell lung cancer (NSCLC). Here, we aimed to address the question of whether the FACS-sorted CSC-like (CD44 + &CD133 +) vs. non-CSC (CD44-/CD133- isogenic subpopulations of p53wt A549 and p53null H1299 cells differ in terms of DNA-damage signaling and the appearance of "dormant" features, including polyploidy, which are early markers (predictors) of their sensitivity to genotoxic stress.
View Article and Find Full Text PDFThe development of new laser-driven electron linear accelerators, providing unique ultrashort pulsed electron beams (UPEBs) with low repetition rates, opens new opportunities for radiotherapy and new fronts for radiobiological research in general. Considering the growing interest in the application of UPEBs in radiation biology and medicine, the aim of this study was to reveal the changes in immune system in response to low-energy laser-driven UPEB whole-body irradiation in rodents. Forty male albino rats were exposed to laser-driven UPEB irradiation, after which different immunological parameters were studied on the 1st, 3rd, 7th, 14th, and 28th day after irradiation.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2021
In a study on primates (Macaca mulatta), neurobiological and radiobiological effects have been studied of the synchronous combined action of 7-day antiorthostatic hypokinesia and exposure of the monkeys' head first to γ-rays during 24 h and then to accelerated C ions. The neurobiological effects were evaluated by the cognitive functions which model the basic elements of operator activity and the concentration of monoamines and their metabolites in peripheral blood. The radiobiological effects were evaluated by the chromosomal aberration and DNA double-strand break (DSB) yield in peripheral blood lymphocytes.
View Article and Find Full Text PDFTo assess the prospects for using intense femtosecond laser radiation in biomedicine, it is necessary to understand the mechanisms of its action on biological macromolecules, especially on the informational macromolecule-DNA. The aim of this work was to study the immunocytochemical localization of DNA repair protein foci (XRCC1 and γH2AX) induced by tightly focused femtosecond laser radiation in human cancer A549 cells. The results showed that no XRCC1 or γH2AX foci tracks were observed 30 min after cell irradiation with femtosecond pulses of 10 W∙cm peak power density.
View Article and Find Full Text PDFRadiotherapy is a primary treatment modality for patients with unresectable non-small cell lung cancer (NSCLC). Tumor heterogeneity still poses the central question of cancer radioresistance, whether the presence of a particular cell population inside a tumor undergoing a selective outgrowth during radio- and chemotherapy give rise to metastasis and tumor recurrence. In this study, we examined the impact of two different multifraction X-ray radiation exposure (MFR) regimens, fraction dose escalation (FDE) in the split course and the conventional hypofractionation (HF), on the phenotypic and molecular signatures of four MFR-surviving NSCLC cell sublines derived from parental A549 (p53 wild-type) and H1299 (p53-null) cells, namely A549FR/A549HR, H1299FR/H1299HR cells.
View Article and Find Full Text PDFInt J Mol Sci
February 2021
Ionizing radiation (IR) is used for patients diagnosed with unresectable non-small cell lung cancer (NSCLC). However, radiotherapy remains largely palliative due to the survival of specific cell subpopulations. In the present study, the sublines of NSCLC cells, A549IR (p53wt) and H1299IR (p53null) survived multifraction X-ray radiation exposure (MFR) at a total dose of 60 Gy were investigated three weeks after the MFR course.
View Article and Find Full Text PDFThe search for radioprotectors is an ambitious goal with many practical applications. Particularly, the improvement of human radioresistance for space is an important task, which comes into view with the recent successes in the space industry. Currently, all radioprotective drugs can be divided into two large groups differing in their effectiveness depending on the type of exposure.
View Article and Find Full Text PDFInt J Mol Sci
May 2020
Radiation therapy is one of the main methods of treating patients with non-small cell lung cancer (NSCLC). However, the resistance of tumor cells to exposure remains the main factor that limits successful therapeutic outcome. To study the molecular/cellular mechanisms of increased resistance of NSCLC to ionizing radiation (IR) exposure, we compared A549 (p53 wild-type) and H1299 (p53-deficient) cells, the two NSCLC cell lines.
View Article and Find Full Text PDFThe main goal of our study was to determine a set of thawed stallion sperm characteristics that have predictive value for the pregnancy rate (PR) of mares after artificial insemination (AI). DNA fragmentation and survival of sperm during hypothermic storage were studied in addition to routinely determined semen characteristics such as concentration, percentage of motile spermatozoa, and morphology. To estimate DNA fragmentation, a modified hallo assay was applied.
View Article and Find Full Text PDFRapidly evolving laser technologies have led to the development of laser-generated particle accelerators as an alternative to conventional facilities. However, the radiobiological characteristics need to be determined to enhance their applications in biology and medicine. In this study, the radiobiological effects of ultrashort pulsed electron beam (UPEB) and X-ray radiation in human lung fibroblasts (MRC-5 cell line) exposed to doses of 0.
View Article and Find Full Text PDFWe assessed the effects of donor age on clonogenicity, proliferative potential, and spontaneous γH2AX foci in the proliferating (Ki67 +) and senescent (SA β-gal +) cultures of skin fibroblasts isolated from 34 donors of different age (23-82 years). Here, we demonstrated that neither the colony forming effectiveness of proliferating (Ki67+) fraction of the fibroblasts nor the average number of γH2AX foci of the same fraction does not depend on the age of the donor. The correlation between the number of γH2AX foci and the donor's age was reliable in quiescent (Ki67-) cells.
View Article and Find Full Text PDFDNA double-strand breaks (DSB) are among the most harmful DNA lesions induced by ionizing radiation (IR). Although the induction and repair of radiation-induced DSB is well studied for acute irradiation, responses to DSB produced by chronic IR exposures are poorly understood, especially in human stem cells. The aim of this study was to examine the formation of DSB markers (γH2AX and phosphorylated kinase ATM, pATM, foci) in human mesenchymal stem cells (MSCs) exposed to chronic gamma-radiation (0.
View Article and Find Full Text PDFAll living organisms are subject to the aging process and experience the effect of ionizing radiation throughout their life. There have been a number of studies that linked ionizing radiation process to accelerated aging, but comprehensive signalome analysis of both processes was rarely conducted. Here we present a comparative signaling pathway based analysis of the transcriptomes of fibroblasts irradiated with different doses of ionizing radiation, replicatively aged fibroblasts and fibroblasts collected from young, middle age and old patients.
View Article and Find Full Text PDFSignaling and physiological activities of the crystalline tetranitrosyl iron complex with thiosulfate-a NO-donor (TNICthio) were first studied on human cells in conditions of mono and combined application of HS and antioxidants. Comparative studies were performed on three cell lines: normal and leukemic T lymphocytes (Jurkat cells) and breast cancer MCF-7 cells (human breast adenocarcinoma). Also established was a high biological activity of TNICthio, as well as correlation between the levels of reactive oxygen species generation, the formation of double-strand breaks (DSB) in DNA and cell proliferation.
View Article and Find Full Text PDF