Publications by authors named "Andreyah Pope"

Despite high-resolution crystal structures of both inactive and active G protein-coupled receptors (GPCRs), it is still not known how ligands trigger the large structural change on the intracellular side of the receptor since the conformational changes that occur within the extracellular ligand-binding region upon activation are subtle. Here, we use solid-state NMR and Fourier transform infrared spectroscopy on rhodopsin to show that Trp265 within the CWxP motif on transmembrane helix H6 constrains a proline hinge in the inactive state, suggesting that activation results in unraveling of the H6 backbone within this motif, a local change in dynamics that allows helix H6 to swing outward. Notably, Tyr301 within activation switch 2 appears to mimic the negative allosteric sodium ion found in other family A GPCRs, a finding that is broadly relevant to the mechanism of receptor activation.

View Article and Find Full Text PDF

The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate.

View Article and Find Full Text PDF

Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily.

View Article and Find Full Text PDF

We describe the use of solid-state magic angle spinning NMR spectroscopy for characterizing the structure and dynamics of dark, inactive rhodopsin and the active metarhodopsin II intermediate. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional rhodopsin containing (13)C- and (15)N-labeled amino acids.

View Article and Find Full Text PDF

Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal-protein and protein-protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system.

View Article and Find Full Text PDF