Publications by authors named "Andrey Yu Zubarev"

The synthesis and physicochemical properties of hydrogels with interpenetrated physical and chemical networks were considered in relation to their prospective application as biomimetic materials in biomedicine and bioengineering. The study was focused on combined hydrogels based on natural polysaccharide-calcium alginate (CaAlg) and a synthetic polymer-polyacrylamide (PAAm). The series of hydrogels with varying proportions among alginate and polyacrylamide have been synthesized, and their water uptake has been characterized depending on their composition.

View Article and Find Full Text PDF

The development of magnetoactive microsystems for targeted drug delivery, magnetic biodetection, and replacement therapy is an important task of present day biomedical research. In this work, we experimentally studied the mechanical force acting in cylindrical ferrogel samples due to the application of a non-uniform magnetic field. A commercial microsystem is not available for this type of experimental study.

View Article and Find Full Text PDF

Modelling of patient-specific hemodynamics for a clinical case of severe coronary artery disease with the bifurcation stenosis was carried out with allowance for standard angiographic data obtained before and after successfully performed myocardial revascularization by stenting of two arteries. Based on a non-Newtonian fluid model and an original algorithm for fluid dynamics computation operated with a limited amount of initial data, key characteristics of blood flow were determined to analyse the features of coronary disease and the consequences of its treatment. The results of hemodynamic modelling near bifurcation sites are presented with an emphasis on physical, physiological and clinical phenomena to demonstrate the feasibility of the proposed approach.

View Article and Find Full Text PDF

This theme issue, in two parts, continues research studies of transport phenomena in complex media published in the first part (Alexandrov & Zubarev 2021 , 20200301. (doi:10.1098/rsta.

View Article and Find Full Text PDF

This paper deals with a theoretical study of the static magnetization of a composite, consisting of nanodisperse single-domain ferromagnetic particles immobilized in a nonmagnetic medium. This situation is typical for magnetopolymer systems-smart materials, which found applications in high industrial and biomedical applications. It is supposed that the composite was polymerized without an external magnetic field; after curing the particles retain the spatial distribution and orientation of their axes of easy magnetization that they had before the host medium polymerization.

View Article and Find Full Text PDF

Experiments demonstrate that magnetic nanoparticles, embedded in a tissue, very often form heterogeneous structures of various shapes and topologies. These structures (clusters) can significantly affect macroscopical properties of the composite system, in part its ability to generate heat under an alternating magnetic field (so-called magnetic hyperthermia). If the energy of magnetic interaction between the particles significantly exceeds the thermal energy of the system, the particles can form the closed ring-shaped clusters.

View Article and Find Full Text PDF

In this paper, we formulate the space-dependent variable-order fractional master equation to model clustering of particles, organelles, inside living cells. We find its solution in the long-time limit describing non-uniform distribution due to a space-dependent fractional exponent. In the continuous space limit, the solution of this fractional master equation is found to be exactly the same as the space-dependent variable-order fractional diffusion equation.

View Article and Find Full Text PDF

We present results of theoretical modelling of macroscopic circulating flow induced in a cloud of ferrofluid by an oscillating magnetic field. The cloud is placed in a cylindrical channel filled by a nonmagnetic liquid. The aim of this work is the development of a scientific basis for a progressive method of addressing drug delivery to thrombus clots in blood vessels with the help of the magnetically induced circulation flow.

View Article and Find Full Text PDF

The issue, in two parts, is devoted to theoretical, computational and experimental studies of transport phenomena in various complex systems (in porous and composite media; systems with physical and chemical reactions and phase and structural transformations; in biological tissues and materials). Various types of these phenomena (heat and mass transfer; hydrodynamic and rheological effects; electromagnetic field propagation) are considered. Anomalous, relaxation and nonlinear transport, as well as transport induced by the impact of external fields and noise, is the focus of this issue.

View Article and Find Full Text PDF

In this paper, we present results of a theoretical study of circulation flow in ferrofluids under the action of an alternating inhomogeneous magnetic field. The results show that the field with the amplitude of about 17 kA m and angular frequency 10 s can induce mesoscopic flow with a velocity amplitude of about 0.5 mm s.

View Article and Find Full Text PDF

The issue is devoted to theoretical, computer and experimental studies of internal heterogeneous patterns, their morphology and evolution in various soft physical systems-organic and inorganic materials (e.g. alloys, polymers, cell cultures, biological tissues as well as metastable and composite materials).

View Article and Find Full Text PDF

Even in the absence of cross-linking, at large enough concentration, long polymer strands have a strong influence on the rheology of aqueous systems. In this work, we show that solutions of medium molecular weight (120 000-190 000 g mol) alginate polymer retained a liquid-like behaviour even for concentrations as large as 20% w/v. On the contrary, solutions of alginate polymer of larger (and also polydisperse) molecular weight (up to 600 000 g mol) presented a gel-like behaviour already at concentrations of 7% w/v.

View Article and Find Full Text PDF

Experiments show that clusters consisting of nano-sized ferromagnetic particles strongly affect the intensity of heat production during magnetic hyperthermia. In this paper, a theoretical study and mathematical modelling of the heat production by clusters of single-domain ferromagnetic particles, immobilized in a host medium, are presented. Two situations of strong and weak magnetic anisotropy of the particles are considered.

View Article and Find Full Text PDF

Ferrogels (FG) are magnetic composites that are widely used in the area of biomedical engineering and biosensing. In this work, ferrogels with different concentrations of magnetic nanoparticles (MNPs) were synthesized by the radical polymerization of acrylamide in stabilized aqueous ferrofluid. FG samples were prepared in various shapes that are suitable for different characterization techniques.

View Article and Find Full Text PDF

This paper deals with a theoretical study of the effect of chain-like aggregates on magnetic hyperthermia in systems of single-domain ferromagnetic particles immobilized in a non-magnetic medium. We assume that the particles form linear chain-like aggregates and the characteristic time of the Néel remagnetization is much longer than the time of medium heating (time of process observation). This is applicable to magnetite particles when the particle diameter exceeds 20-25 nm.

View Article and Find Full Text PDF

This issue is concerned with structural and phase transitions in heterogeneous and composite materials, the effects of external magnetic fields on these phenomena and the macroscopic properties and behaviour of materials with isotropic and anisotropic internal structures. Using experimental, theoretical and computer methods, these transitions are studied at the atomic and mesoscopic levels. The fundamental specific feature of structural transitions in many heterogeneous media consists of the fact that these transitions are stacked for a long time in non-equilibrium states that appear due to either macroscopic dissipative processes (an alternating magnetic field or hydrodynamic flow, for instance) or system lifetime in a metastable state.

View Article and Find Full Text PDF

The formation of structures in a ferrofluid by an applied magnetic field causes various changes in the rheological behaviour of the ferrofluid. A ferrofluid based on clustered iron nanoparticles was investigated. We experimentally and theoretically consider stress relaxation in the ferrofluid under the influence of a magnetic field, when the flow is suddenly interrupted.

View Article and Find Full Text PDF

This paper deals with the theoretical study of the magnetorhelogical properties of dilute suspensions of polymer coils with ferromagnetic nanoparticles adsorbed on the macromolecules. The analysis shows that, under an applied magnetic field, these coils elongate in the field direction and swell. Both these factors lead to a significant increase in the effective viscosity of the system.

View Article and Find Full Text PDF

The stationary and oscillatory properties of dilute ferromagnetic colloidal suspensions in plane Couette flow are studied. Analytical expressions for the off-equilibrium magnetization and the shear viscosity are obtained within the so-called effective field approximation. We also investigate the predictions of a different approximation based on the linearized moment expansion.

View Article and Find Full Text PDF